
FOCUS ON FILEMAN

FileMan Version 21:
The Database Server

by Rick Marshall

Part 3 of 3: Editing an
Existing Record
We continue now with our preview of
FileMan version 21, released to the
field earlier this year. This article con­
cludes our examination of how and
when to use the individual calls that
make up the DBS (Database Server)
by explaining how to use the DBS to
display records to the user, provide
help in filling in the fields, validate
what the user enters, and eventually
file the updated record back into the
database. The DBS for FileMan ver­
sion 21 was designed to emphasize
these basic tasks involved in the cre­
ation of a GUI (Graphical User Inter­
face) data entry and editing applica­
tion built around a FileMan database.

Because the DBS focuses on the non­
interactive parts of the process, the
application must provide both the user
interface and any networking or chan­
neling capabilities. Although the
DBS can provide database access for
several distinct kinds of applications
(such as generic client-server, linkage
with non-M systems, and synchroni­
zation between parallel databases in
different formats), this article will use
the GUI example to demonstrate the
DBS's use.

Retrieving
Current Data
After the user selects a record using
the DBS lookup calls explored in part
2 of this series (see M Computing,
April 1995), the application needs to

30 Al COMPUTING

offer a window with data entry and
editing gadgets prepopulated with the
current data. Two calls in the DBS
will help: the Data Retriever, GETS;\
DIQ and the Single Data Retriever,
$$GET1ADIQ.

The two data retrieval calls are simi­
lar. They can return data in either in­
ternal (storage) or external (display)
format, the former being most useful
for computation and the latter for user
interaction. Like most DBS calls,
these use a full set of error messages
to report problems with the call, and
the application bears responsibility
for detecting and responding to these
error conditions when they arise.
Each returns data from a single
record.

Apart from those similarities, the
structural differences between the
calls result in distinct usage. Where
the Single Data Retriever uses M's
extrinsic function calling syntax to re­
turn the value of a single field, the
Data Retriever returns any number of
fields in an FDA (Filer Data Array)
structure (see M Computing, Novem­
ber 1994). This makes the Single Data
Retriever ideal for use within pro­
gramming hooks, where the current
convention of direct global access
can make database conversions a deli­
cate process requiring coordination
among many different software pack­
ages. The Data Retriever proves more
useful in full- scale database interface
work such as the sample GUI editing
session.

The 1995 (draft) M Standard brings
transaction processing capabilities to
the language. The FileMan team
plans to use these capabilities after
ANSI approves the standard, so the
DBS calls assull).e a transaction-like
interaction with the calling applica­
tion. To fit this model, an efficient
data entry and editing application will
use two FDA structures: one to de­
scribe the data prior to editing, and
one to collect and store the changes
until the user decides to update the
database.

The Data Retriever populates the first
FDA for the application. To accom­
modate transactions involving a sin­
gle logical record that spans multiple

\;;.:
physical records, the Data Retriever
adds each record's data to the FDA
without first clearing the FDA. Be­
cause this lets data accumulate, call­
ing the Data Retriever once per physi­
cal record will result in an FDA that
describes the logical record. Once the
Data Retriever has returned the com­
plete logical record's current data, the
application bears responsibility for
presenting the data to the user and en­
gaging in the dialog in which the user
will edit the data.

Providing Help
FileMan's rich help capabilities have
proven a key element in VA' s (Veter­
ans Affairs) software strategy, so
FileMan extends those help capabili­
ties to all applications built around the
DBS. The Helper, HELPADIE, lets
the application fetch the help text as-

November/December 1995 j

sociated with any data field. An as­
sortment of flags lets the caller specify
any level of help available from
FileMan.

As with all user interface issues, the
application bears responsibility for
detecting a user's request for help.
The VA FileMan team recommends
that fields interfaced by text gadgets
should permit the user to use the stan­
dard "?" and "??" input convention to
request simple and more elaborate
help. The Helper will return the help
text in a standard array, which the ap­
plication should then display to the
user.

Note that the Helper does not provide
the lists of entries usually displayed
for .01, pointer;and variable pointer
field help. The application should use
the Lister, described in part 2, to gen­
erate these lists.

Validating User Input
An effective user interface should
perform as much data validation as
possible while the user edits the data
values, rather than saving up all data
validation for the end of the transac­
tion. This takes advantage of the
user's attention and helps correct mis­
understandings and errors before they
are propagated to other fields.

The Validator, VAli'DIE, takes a
field value and either accepts or re­
jects it. If the caller uses the F flag,
the Validator puts the accepted value
into an FDA. This usage creates the
second FDA used in transaction-like
editing sessions. The Validator re­
jects values by returning error #701
(The Value is not Valid).

Aside from executing the usual
screens and transforms in the course
of data validation, V AUDIE prop­
erly interprets the values ""and"@"
as field value deletion and populates
the FDA accordingly. It also rejects

November/December 1995

changes to uneditable fields that al­
ready contain data, and if the R flag
is present, confirms that the record al­
ready exists. If the E flag is present,
it also returns the external format of
the validated value in a parameter
passed by reference. The application
can use this last feature to echo back
the standard representation of a value
that has multiple user input values.

The Validator does not handle input
values beginning with "?", conven­
tionally used to request help. The ap­
plication must check for such values
and handle them with calls to the
Helper, calling the Validator only for
the remaining input values.

In the course of an editing session,
this second FDA, the one passed to
the Validator, will accumulate data
for the user's edits, resulting in an
FDA typically shorter than the one
used to populate the window initially.

Filing Edited Data
Should the user choose to cancel the
transaction, the application has little
work to do; the database has not been
updated yet. To commit the transac­
tion, simply pass the second FDA to
the Filer, FILEADIE, and it will file
the prevalidated changes to the
database.

With the E flag, the Filer can both val­
idate and file data, but the technique
described in this article results in a
more efficient call. Should the Filer
encounter error conditions, it will file
what it can and return error messages
for what it cannot. It will fire off all
appropriate cross-references, will
audit as appropriate, and will properly
delete field values.

Use the Filer specifically for editing
the data of an existing record. The
Filer will not delete . 01 fields, since
this would result in record deletion.
Neither does the Filer permit the ere-

ation of new records, either at the top
level or in a subfile. Use the Updater
to add records. FileMan 21 's DBS
does not include a record deletion
call. The classic call ADIK has been
made reentrant for version 21, so for
now, applications should use it for re­
cord deletion. Because this operation
has not yet been integrated into the
DBS, the application will need to use
some application-specific data struc­
tures to track record deletion requests
prior to committing the transac­
tion. The Word Processing Filer,
WPADIE, permits more control over
how word processing fields are filed,
giving the application the option of
appending new data rather than re­
placing it. The application needs to
handle the various cases with the right
call for the task involved.

This step, filing the changes, con­
cludes and completes a data entry
transaction, but the application needs
to properly handle two other details of
the process: serialization and invo­
cation.

Locking the Record
The application must ensure serial ac­
cess of its records. Because this kind
of editing session spans multiple File­
Man calls, only the application is
guaranteed to have control at both the
beginning and end of the process, so
the application must bear responsibil­
ity for using the LOCK command to
reserve the record during editing.

Use incremental locks in order by file
number to lock the physical records
that make up the logical record in use
and decremental locks to release
them. Lock the record, or a specific
node within the record, not the whole
file. Lock the records after selection,
and release them after filing the re­
sults of the editing session.

This step prevents the possibility of
having multiple users simultaneously

M COMPUTING 31

modifying the same record. Some de­
velopers skip this step in an attempt
to hurry their applications to the field,
but doing so ensures eventual data­
base degrade. Give this application
development step the priority it de­
serves.

Invoking the DBS
MW API interfaces can place calls to
the DBS directly in the callback code,
ensuring a fast, simple linkage be­
tween the GUI interface and the DBS.
GUI interfaces built outside M, on the
other hand, must provide some kind
of linkage that allows invocation of
the DBS calls by the external GUI
system. In either case the GUI system
must begin the invocation, but exter­
nal systems need software to com­
plete it.

VA has built a tool called the Data
Broker, which manages and com­
pletes the linkage between an external
system and the DBS. It converts re­
quests into calls to the DBS and then
takes the results of the DBS calls and
converts them into formatted data for
the externai system. Although VA
currently uses Delphi as its GUI sys­
tem, the Broker can be used as the
linkage to any external system.

Finally, efficient use of development
time demands the creation of gadgets
or data controls that package up the
various details of starting and pro­
cessing a DBS invocation. For exam­
ple, the technology of a listbox will
usually be combined with calls to the
Lister and processing of the results,
so applications should develop gad­
gets that bind up the standard code in­
volved into a sharable, reusable gad­
get. Reuse of such gadgets will help
standardize GUI interface conven­
tions and speed up development time.

32 Al COMPUTING

Conclusion
As developers of FileMan-based ap­
plications around the world continue
migrating to GUI and client-server
software, the DBS will continue to
evolve to solve the next generation of
problems developers face. Eventu­
ally, the DBS will provide a complete
API (application programming inter­
face) to the FileMan database, letting
developers write their own interfaces
to this powerful database manage­
ment system. Al

Forward your FileMan questions or topics
to
G.FILEMAN DEVELOPMENT TEAM@FORUM.VA.GOV,

or write to VAISC6-San Francisco, Suite
600, 301 Howard Street, San Francisco, CA
94105.

Rick Marshall works at the Seattle office of
VA's San Francisco IRM Field Office. He
writes and programs for the FileMan devel­
opment team, serves on the Board of Direc­
tors of the MTA, edits the M Standard for
MDC, and teaches at MTA's annual
meeting.

M Serves the World

The 1996 MTA Annual

Conference will be held in

conjunction with

Database & Client/Seiver World

March 24-28, 1996

See you in Boston!

1995-1996
M Technology
Association
Board of Directors
John F. Covin
Chair
Corning Pharmaceutical Svcs
210 Carnegie Center
Princeton, NJ 08540
Phone: 609-452-4432
Fax: 609-452-9821

David A. Holbrook
Vice Chair
InterSystems Corporation
One Memorial Drive
Cambridge, MA 02142
Phone: 617-621-0600
Fax: 617-494-1631

Elliot A. Shefrin
Treasurer
NIH/Gerontology Research Center
4940 Eastern Avenue
Baltimore, MD 21224
Phone: 410-558-8144
Fax: 410-558-8321

Richard G. Davis, Ph.D.
Immediate Past Chair
Mformation SYStems, Inc.
209 Edgebrook Drive
Boylston, MA 01505-0505
Phone: 508-869-6976
Fax: 508-869-6008

Catherine Pfeil, Ph.D.
Executive Director
V AISC6-San Francisco
301 Howard Street, Suite 600
San Francisco, CA 94105
Phone: 415-744-7520
Fax: 415-744-7530'-

John Glaser
Member at Large
Brigham & Women's Hospital
75 Francis Street
Boston, MA 02115
Phone: 617-732-6408
Fax: 617-732-5343

Rick D.S. Marshall
Member at Large
VA IRM Field Office
ISC
1660 S. Columbian Way
Seattle, WA 98108-1597
Phone: 206-764-2283
Fax: 206-764-2923

John M. McCormick
Member at Large
InterSystems Corporation
One Memorial Drive
Cambridge, MA 02142
Phone: 617-621-0600
Fax: 617-494-1631

Susan A. Schluederberg
Member at Large
Connections Group, Ltd.
1100 Sunset Drive
Bel Air, MD 21014
Phone: 410-838-6062
Fax: 410-838-6062

November/December 1995

