
TOOLS OF THEM TRADE

Rehabilitation of Legacy Systetns
by Autotnatic Methods

l,y Steven Popkes

Introduction
Few programmers in the late sixties and seventies, or even
in the early eighties, expected the applications they devel
oped to last for decades. They fashioned solutions to their
assigned tasks with the best technology and techniques they
knew. In the passage of time, different programmers en
hanced or rewrote portions of the older product in unexpected
ways, using diff erenttechniques and styles, and with a differ
ent understanding of the product from that of the original au
thors. Given the limited documentation that is the custom
in the M community, knowledge was lost in the transitions
between programmers.

The process of knowledge attrition and unanticipated
changes culminates in systems operating in obscure and ar
cane ways, presenting information that, though perhaps ac
curate, is not certifiable. Such systems do not inspire confi
dence in their users.

The systems often cannot be easily replaced, however, be
cause their idiosyncrasies have over time come to mirror the
idiosyncrasies of the organization. As these systems mature,
they ultimately embody the rules and structure by which the
organization operates. System and organization have become
an organic whole. Software developed over twenty years of
effort has become, by definition, a legacy. Though now these
cranky, clunky systems are viewed with contempt, organiza
tions heavily depend on them. Businesses put up with the
gradual calcification of the architecture because the prospect
of rewriting the system is viewed as painful or impossible.

In fact, a legacy system is a mine of knowledge. The model
of the organization is embodied in it. The flow of transactions
is described by it. And the information required from and for
users is encoded in it. In a given organization, the logical
structure of the legacy system may be the only reliable or
unambiguous source for knowledge of the organization's
business.

8 Ill COMPUTING

The effort of replacing a legacy system can take several
forms:

• The legacy system can be rewritten. That is, the effort is
made to change the system by rebuilding on the existing
code. This requires a thorough understanding of the sys
tems operation.

• A new system can be written in-house to replace it. New
code and/or a new platform is used to replace the old in its
entirety. A new system can be written only if the rules by
which the organization operates (embodied in the legacy
system) is understood.

• A modern system written by some third party can be pur
chased to replace it. The proper replacement system can
only be chosen if the business rules are understood.

• A wrapper can be built that puts a modern face on the old
code. Wrappers must be written with a thorough knowl
edge of the underlying target code.

All of these methodologies have at their heart an understand
ing of the legacy system as it currently operates and a means
by which the legacy system can be modified or replaced.

Understanding the Legacy System
The goal of understanding the legacy system has two compo
nents: finding ancillary information outside the system by in
terviews, by reading documentation, or by watching the sys
tem in operation and by studying the legacy system itself. It
is the latter that will be discussed here: studying the internal
dynamics of the legacy system.

There is a human component to any legacy system study
no automated means can replace it. However, while code ap
prehension, defined here to be an understanding of code oper
ation from the reading of static code, is a human trait; code
auditing, defined here to be the accumulation of code facts,
is the province of software. This is why code analysis tools
were originally developed even decades ago.

Mis particularly amenable to code auditing. It is a clearly
defined language. While the complexity of a given system is
potentially quite large, the components of the lcmguage are
quite simple. Indirection and XECUTEs are exceptions to

September/October 1995

I
I

this rule. However, most systems use indirection rather spar
ingly and in easily characterized ways that, once discovered,
can usually be incorporated into rules and processed like any
other part of an M system.

This is not, of course, universally true. Indirection in system
level code can often be esoteric and not at all amenable to
either automatic analysis or automatic regeneration. It is also
said that all M systems can be simulated by the line of code
"READ X XECUTE X"-an analogy to the way that all sys
tems can be modeled by an appropriate use of Turing ma
chines. It is equally true though, that systems that make ex
tensive use of idiosyncratic indirection or overuse
XECUTEs, are also those systems that are typically rewritten
by hand or replaced.

Most code apprehension techniques can quantify uses of vari
ables, calling trees, parameter linkages, etc., of an M system.
These are the individual bones of the M system's skeleton.
Auditing an M system is more complex and difficult. The
limits of auditing even comparatively small M systems are
more computational than anything else.

The full examination of code auditing is beyond the limits of
a single article. We can, however, illuminate some of the
problem by viewing some of the issues of variables and the
data they contain.

M makes liberal usage of variables. Variables in any given
M process have a lifespan from the time their scope is created
to the time when it ceases. Following a variable's computa
tional trail can be quite useful in determining the possible
meanings of naked references, the resolution of code module
definition, or the nature of data that ultimately is placed in a
global.

The general lifespan of an M variable can be shown in the
following flow chart:

variable name
allocation

t
variable
binding

t
variable
reading

t
variable
destruction

NEW or start of process. (no
allocation at start of process)

SET, READ or MERGE command

use of var in expression

end of context or KILL command.

The concept of a "module" is not clearly defined in M. The
definition of a module is essential to any discussion of M
code. Modules are the means by which the functional analy-

September/October 1995

sis of code must proceed. For our purposes, we can consider
a module a discrete unit of M commands and expressions that
has a defined entry point callable by a DO or GOTO and a
defined exit point using a QUIT.

Once the concept of module is established, it is useful to have
the concept of "arc" defined. An arc can be described as the
code processing of M variables or data. It is separate from
but related to scope since scope is tightly coupled to the be
havior of the NEW command. The arc of a variable is often
independent of the data the variable contains. The arc of data
can span modules and variables, has the ability to fork, be
modified, and other properties beyond the purpose of this ar
ticle.

The arc of any M variable is not restricted to a given module
as it is in many languages. The relationship between the vari
able arc and the module is one of varying independence. Vari
ables can be set in one module, read in a second, and killed
in a third, all without a parameter being passed. Coupled with
M's embedded concept of late binding, this can make the
analysis of a given M module difficult.

Legacy systems were commonly developed before parameter
passing was part of the language. This makes analysis diffi
cult because the variable requirements of a subroutine, mod
ule, or routine are implied rather than explicitly defined.
Some legacy system designs can have the effect of making
the auditing of any single module trigger the auditing of the
entire system. There are systems currently in operation in the
M community where this is the case.

For example, consider the dependence of variables in the fol
lowing code:

MOD(A,C)
S B=A+C
S D=A*C
I D>B S B=lO
W ! ,B
Q

The values of A and Care, of course, dependent on the out
side invocation of the subroutine MOD. They can therefore
be functionally described as:

A
C

f(ext(A))
f(ext(C))

where "ext(x)" is defined to be the external binding of
the variable value "x".

The first iteration of B, B .1, is defined within the context of
the MOD and is dependent on the values of A and C. Dis
similarly dependent but based on a different expression:

B.l == f(ext(A))+f(ext(C))
D == f(ext(A))*f(ext(C))

M COMPUTING 9

B .2, the second iteration of B, is conditionally dependent on
the value of D:

B.2 == f(D)>f(B.1):10 OR f(B.l)

The matrix of what B.2 can be, therefore, is the following:

B.2 == lf(D)>f(B.l) :101
I f(B. l) I

Assume that there are two values each of A and C on entry
into MOD:

A I 1 I
121

C I 1 I
131

The possible combinations of A and C then become the fol
lowing:

MOD(A,C) 11 11
11 31
12 11
12 31

B .1 and D then become:

B.l 12 I
141
131
151

D I 1 I
131
121
161

B.2 then can be equal to:

B.2 11>2:10 OR B.1:2 ==> 21
13>4:10 OR B.1:4 ==> 41
12>3:10 OR B.1:3 ==> 31
16>5:10 OR B.1:5 ==> 101

This is an extremely simple example. Yet, the logic that must
be used to describe it is rather complex. Even this relatively
simple result is not straightforward. The range of possible
values of B .2 is only four because we know the actual values.
More often, the values passed to a given routine are not
known but only describable functionally. In that case, the
number of possibilities for a given variable are the products
of the number of possibilities for its constituent parts. The
example variables can then be described as:

f(B.l) I f(ext(A(l)))+f(ext(C(l))) I
lf(ext(A(2)))+f(ext(C(l))) I
lf(ext(A(l)))+f(ext(C(2))) I
lf(ext(A(2)))+f(ext(C(2))) I

4 possibilities

f(D) lf(ext(A(l))).f(ext(C(l))) I
lf(ext(A(2))).f(ext(C(l)))I
lf(ext(A(l))).f(ext(C(2)))1
lf(ext(A(2))).f(ext(C(2)))1

4 possibilities

B.2 lf(D(l))>f(B.l(l))=>cnst
lf(D(2))>f(B.l(l))=>cnst
lf(D(3))>f(B.l(l))=>cnst
lf(D(4))>f(B.l(l))=>cnst

10 M COMPUTING

f(B. l(1)) I
f(B. l(1)) I
f(B. l(1)) I
f(B. l(1)) I

lf(D(l))>f(B.1(2))=>cnst
lf(D(2))>f(B.1(2))=>cnst
lf(D(3))>f(B.1(2))=>cnst
lf(D(4))>f(B.1(2))=>cnst
... etc.

where "cnst" denotes a constant.

f(B.1(2)) I
f(B.1(2)) I
f(B.1(2)) I
f(B.1(2)) I

It is obvious that the computational complexity of the analy
sis increases exponentially. Complete variable auditing of a
particular system may not be practical due to computational
constraints. However, the variable auditing of a given mod
ule or selected variable can often be done. Successive analy
ses will generate more information with which to tailor the
analysis. Thus, tracing the lifespan of a given variable for
specific reasons is often possible and useful.

Variables, as important as they are to code, are merely vehi
cles for data. The passage of data through a system-the data
arc-is more significant. Consider the following code:

S A="TEST"
S B=A
S C=B

In this most trivial of examples, the important information is
not the list of variables containing the string "TEST". Rather,
the path of "TEST" and its ultimate destination and form is
much more interesting. It should also be noted that data can
"fork". Consider if the value in A was not "TEST", but a
bank balance. B is its local repository. The value in C also
contains the same bank balance. In effect, the data originally
in A has now forked into the variables B a,gd C, as well as
being retained in the variable A. Each of these three variables
can now be manipulated physically independently of the
other two, though they could each be logically related to the
original data in A. The arc of the data in A is continued
through the variables A, B, and C as they are manipulated or
until the information is destroyed or permanently stored.

If the code were changed in the following way:

S A="TEST"
S A="bank balance"
S B=A

The arc of the data "TEST" extends no more than one com
mand since "TEST" is destroyed in the following set. In the
above example, if the initial value of A is significant, reset
ting it-destroying the data-can have potential side effects.
Finding such occurrences is a good result from finding out
the data arcs.

Simply put, M systems take in data, process it according to
some rules as expressed in code and store it in M globals and
the reverse. The variables that contain the data on its way to
the global are not significant. Only the data, its operations
and its ultimate destination are significant.

September/October 1995

Consider the following code:

MOD(S,A)

D MOD(l,10)
Q

S A=A,.5
s AG(S)=A
Q

From the above example, we can define the variable A and
S in the following way:

A.l == f(ext(A))
S == f(ext(S))
A.2 == f(A.l) [A.1..5]

G(S) then can be described in this way:

G(f(ext(S)) == f(A.l)

The data residing at node f(ext(S)) is defined in a general
form off(ext(A))*5. In effect, this analysis has yielded a defi
nition of the required operations for that particular node. This
act has two profound side effects: 1) it is the first step in defin
ing a data dictiona'ry for the global in question and 2) it de
scribes the global transaction.

M data handling is far, far more complex than this of course.
At first glance, tracing the variable or data lifespan in a given
M system appears to be an intractable problem. The method
of solving any problem that appears intractable is invariably
the same: solve what can be solved and then analyze the re
mainder. Such an approach can achieve significant results.
We have found that a surprising amount of transactional in
formation can be obtained with automated methods. These
methods are limited by the constraints described here, but
they are useful nonetheless.

Only variables have been covered here. Other components
of M code are amenable to similar patterns of analysis. The
analysis of a legacy system using these methods could yield
dataflow diagrams, modular calling trees based on the flow
of information through the code and the basic outlines of pos
sible transactions.

Rewriting the Legacy System
Once a good understanding of the operation of the legacy
system is established, a methodology by which the system
can be adapted to the organization's needs must be selected.

The four kinds of approach were mentioned in the intro
duction:

• The legacy system can be rewritten.

• A new system can be written in-house to replace it.

• A modem system written by some third party can be pur
chased to replace it.

September/October 1995

• A wrapper can be built that puts a modem face on the old
code.

The four approaches are not mutually exclusive. Some com
ponents of a given system could be replaced while other com
ponents could be rewritten. If the system is just replaced or
written anew from scratch, then rewriting is not necessary.

However, sometimes the operation of a legacy system can
suit an organization so well that alternatives are inadequate.
If this is so, then the legacy system must be adapted somehow
to the modem computing world. This can be done by hand.
For simple changes, where the operation of the system is thor
oughly understood, or where the cost of the adaptation is no
object, changing the system by hand could be the best de
cision.

In other cases, the amount of information that is needed or
the scale of the changes to be executed can make automated
means the method of choice.

An automatic method can be as simple as using a routine to
change the occurrence of every string or as complex as an
AI tool that attempts to analyze the intent in the mind of the
original programmer. The best solution is usually a compro
mise between the two.

We have found that most of the time spent building the tools
supporting a recoding effort fall into two basic areas:

• analyzing the code in sufficient detail to determine unam-
biguously the execution of the code

• describing the code in an abstract manner.

The abstracted code then becomes the base for manipula
tions, not the original code itself. After the abstracted code
is modified, it is then reconstructed; code rewriting occurred
only on code assembly:

base code

!
abstracted
code model

!
manipulation
of abstracted
model

!
code reassembly

The goal is to be able to take any block of M code and recon
struct functionally equivalent code. No attempt is made to
bring original code forward. Manipulation of the abstracted
model would result in functionally superior code. It is also
possible that the resulting code could be formally provable,

., COMPUTING 11

though this is not a current avenue of our research. Certainly,
a system regenerated in this manner would be better able to
take advantage of automated QA tools already present in the
market.

Regenerating code has many beneficial side effects even
when no manipulation of the abstracted code occurs. For ex
ample, long lines can be broken down into constituent parts.
Dependent clauses, the arguments of FORs and IFs, can be
turned into argumentless DOs, if that is desired. Direct refer
ences to specific globals could be transformed into data dic
tionary references or processed into calls to a common filing
or retrieving program.

Conclusion
The main advantage of automatically analyzed and recon
structed code is one of thoroughness and reproducibility. Ma
chines do not get tired of doing the same thing over and over
again. If they do a thing once correctly, they will do the same
thing correctly a thousand times. This is their virtue and why
we use them. We have developed tools that can automatically
analyze M code and derive an abstract model of the code. We
are currently using these tools to derive other programs to
both analyze M code and derive information regarding vari
ables, global transactions and data lifespan, as well as build
ing new code based on a modified abstract code model.

We have also found the automated analysis of code reveals
issues and problems that could only have been foreseen by
the original authors or after great effort. The information so
gleaned becomes grist for the mill of further analysis as well
as the generation of other enabling technology such as data
dictionaries, common calling tools, and the building of ad
ministrative tables.

Techniques and algorithms such as those we have developed
should be considered enabling technology, to be used to bring
forward legacy systems and their inherent knowledge into the
modern computing community. Al

Steven Popkes is VP in charge of Research and Development of Jac
quard Systems Research. He has been using M since 1978. JSR special
izes in tools and consulting to regenerate systems by automatic
methods.

12 Al COMPUTING

Calendar
October 15-19, 1995

ACM' s 10th OOPSLA (Object-Oriented Programming, Systems,
Languages, and Applications), Austin, Texas. For more informa
tion on the meeting contact the OOPSLA '95 Office, 7585 SW
Mohawk Street, Tualatin, Oregon 97062. Phone: 503-691-0890;
fax: 503-691-1821; email: oopsla95@acm.org.

October 28-November 1, 1995
Symposium on Computer Applications in Medical Care
(SCAMC), New Orleans, LA. For information contact AMIA,
4915 St. Elmo Ave., Suite 401, Bethesda, MD 20814. Ph: 301-
657-1291, Fax: 301-657-1296.

October 29-31, 1995
Healthcare Information Management Systems Society (HIMSS)'s
NETCON '95, Keystone, CO. "The Evolving Healthcare Net
work: Growth Technologies and Applications for the Reformed
Health System." For information call 312-664-4467, ext. 116.

November 6-10, 1995
MT A-Europe Annual Meeting, Barcelona, Spain. For more infor
mation, contact the MT A-Europe Office, Avenue Mounier 83, B-
1200, Brussels, Belgium. Phone: 32-2-772-9247; fax: 32-2-772-
7237.

March 24-28, 1996
MT A Annual Conference with Database and Client/Server World
Conference and Exposition, Boston, MA. Registration booklet
will be mailed early November.

Advertiser Index
\;;:

We appreciate these sponsors of the September issue and all the
companies who support the M community through their commit
ment to excellence.

Arnet .. 3
Atlas .. 7
Career Professionals Unlimited 48
CoMed .. 36
Cue Data ... 43
CyberTools . 1
ESI Technology, Inc 45
HBO & Company 41
Henry Elliott & Company Cover 2, 53
InterSystems Corporation 6
KB Systems, Inc 49
Kennedy Memorial Hospitals 48
Kogan-Rose Associates, Inc 48
McIntyre Consulting, Inc. 48
Micronetics Design Corporation . 54
MUMPS Audiofax Cover 4
Pro-Med Personnel Services, Inc 43
Sentient Systems 55
Nathan Wheeler and Company 43
Xtension . 17

This index appears as a service. to our readers. The publisher does

not assume any liability for errors or omissions.

September/October 1995

