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Introduction 
Few programmers in the late sixties and seventies, or even 
in the early eighties, expected the applications they devel
oped to last for decades. They fashioned solutions to their 
assigned tasks with the best technology and techniques they 
knew. In the passage of time, different programmers en
hanced or rewrote portions of the older product in unexpected 
ways, using diff erenttechniques and styles, and with a differ
ent understanding of the product from that of the original au
thors. Given the limited documentation that is the custom 
in the M community, knowledge was lost in the transitions 
between programmers. 

The process of knowledge attrition and unanticipated 
changes culminates in systems operating in obscure and ar
cane ways, presenting information that, though perhaps ac
curate, is not certifiable. Such systems do not inspire confi
dence in their users. 

The systems often cannot be easily replaced, however, be
cause their idiosyncrasies have over time come to mirror the 
idiosyncrasies of the organization. As these systems mature, 
they ultimately embody the rules and structure by which the 
organization operates. System and organization have become 
an organic whole. Software developed over twenty years of 
effort has become, by definition, a legacy. Though now these 
cranky, clunky systems are viewed with contempt, organiza
tions heavily depend on them. Businesses put up with the 
gradual calcification of the architecture because the prospect 
of rewriting the system is viewed as painful or impossible. 

In fact, a legacy system is a mine of knowledge. The model 
of the organization is embodied in it. The flow of transactions 
is described by it. And the information required from and for 
users is encoded in it. In a given organization, the logical 
structure of the legacy system may be the only reliable or 
unambiguous source for knowledge of the organization's 
business. 
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The effort of replacing a legacy system can take several 
forms: 

• The legacy system can be rewritten. That is, the effort is 
made to change the system by rebuilding on the existing 
code. This requires a thorough understanding of the sys
tems operation. 

• A new system can be written in-house to replace it. New 
code and/or a new platform is used to replace the old in its 
entirety. A new system can be written only if the rules by 
which the organization operates ( embodied in the legacy 
system) is understood. 

• A modern system written by some third party can be pur
chased to replace it. The proper replacement system can 
only be chosen if the business rules are understood. 

• A wrapper can be built that puts a modern face on the old 
code. Wrappers must be written with a thorough knowl
edge of the underlying target code. 

All of these methodologies have at their heart an understand
ing of the legacy system as it currently operates and a means 
by which the legacy system can be modified or replaced. 

Understanding the Legacy System 
The goal of understanding the legacy system has two compo
nents: finding ancillary information outside the system by in
terviews, by reading documentation, or by watching the sys
tem in operation and by studying the legacy system itself. It 
is the latter that will be discussed here: studying the internal 
dynamics of the legacy system. 

There is a human component to any legacy system study
no automated means can replace it. However, while code ap
prehension, defined here to be an understanding of code oper
ation from the reading of static code, is a human trait; code 
auditing, defined here to be the accumulation of code facts, 
is the province of software. This is why code analysis tools 
were originally developed even decades ago. 

Mis particularly amenable to code auditing. It is a clearly 
defined language. While the complexity of a given system is 
potentially quite large, the components of the lcmguage are 
quite simple. Indirection and XECUTEs are exceptions to 
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this rule. However, most systems use indirection rather spar
ingly and in easily characterized ways that, once discovered, 
can usually be incorporated into rules and processed like any 
other part of an M system. 

This is not, of course, universally true. Indirection in system 
level code can often be esoteric and not at all amenable to 
either automatic analysis or automatic regeneration. It is also 
said that all M systems can be simulated by the line of code 
"READ X XECUTE X"-an analogy to the way that all sys
tems can be modeled by an appropriate use of Turing ma
chines. It is equally true though, that systems that make ex
tensive use of idiosyncratic indirection or overuse 
XECUTEs, are also those systems that are typically rewritten 
by hand or replaced. 

Most code apprehension techniques can quantify uses of vari
ables, calling trees, parameter linkages, etc., of an M system. 
These are the individual bones of the M system's skeleton. 
Auditing an M system is more complex and difficult. The 
limits of auditing even comparatively small M systems are 
more computational than anything else. 

The full examination of code auditing is beyond the limits of 
a single article. We can, however, illuminate some of the 
problem by viewing some of the issues of variables and the 
data they contain. 

M makes liberal usage of variables. Variables in any given 
M process have a lifespan from the time their scope is created 
to the time when it ceases. Following a variable's computa
tional trail can be quite useful in determining the possible 
meanings of naked references, the resolution of code module 
definition, or the nature of data that ultimately is placed in a 
global. 

The general lifespan of an M variable can be shown in the 
following flow chart: 

variable name 
allocation 

t 
variable 
binding 

t 
variable 
reading 

t 
variable 
destruction 

NEW or start of process. (no 
allocation at start of process) 

SET, READ or MERGE command 

use of var in expression 

end of context or KILL command. 

The concept of a "module" is not clearly defined in M. The 
definition of a module is essential to any discussion of M 
code. Modules are the means by which the functional analy-

September/October 1995 

sis of code must proceed. For our purposes, we can consider 
a module a discrete unit of M commands and expressions that 
has a defined entry point callable by a DO or GOTO and a 
defined exit point using a QUIT. 

Once the concept of module is established, it is useful to have 
the concept of "arc" defined. An arc can be described as the 
code processing of M variables or data. It is separate from 
but related to scope since scope is tightly coupled to the be
havior of the NEW command. The arc of a variable is often 
independent of the data the variable contains. The arc of data 
can span modules and variables, has the ability to fork, be 
modified, and other properties beyond the purpose of this ar
ticle. 

The arc of any M variable is not restricted to a given module 
as it is in many languages. The relationship between the vari
able arc and the module is one of varying independence. Vari
ables can be set in one module, read in a second, and killed 
in a third, all without a parameter being passed. Coupled with 
M's embedded concept of late binding, this can make the 
analysis of a given M module difficult. 

Legacy systems were commonly developed before parameter 
passing was part of the language. This makes analysis diffi
cult because the variable requirements of a subroutine, mod
ule, or routine are implied rather than explicitly defined. 
Some legacy system designs can have the effect of making 
the auditing of any single module trigger the auditing of the 
entire system. There are systems currently in operation in the 
M community where this is the case. 

For example, consider the dependence of variables in the fol
lowing code: 

MOD(A,C) 
S B=A+C 
S D=A*C 
I D>B S B=lO 
W ! ,B 
Q 

The values of A and Care, of course, dependent on the out
side invocation of the subroutine MOD. They can therefore 
be functionally described as: 

A 
C 

f(ext(A)) 
f(ext(C)) 

where "ext(x)" is defined to be the external binding of 
the variable value "x". 

The first iteration of B, B .1, is defined within the context of 
the MOD and is dependent on the values of A and C. Dis 
similarly dependent but based on a different expression: 

B.l == f(ext(A))+f(ext(C)) 
D == f(ext(A))*f(ext(C)) 
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B .2, the second iteration of B, is conditionally dependent on 
the value of D: 

B.2 == f(D)>f(B.1):10 OR f(B.l) 

The matrix of what B.2 can be, therefore, is the following: 

B.2 == lf(D)>f(B.l) :101 
I f(B. l) I 

Assume that there are two values each of A and C on entry 
into MOD: 

A I 1 I 
121 

C I 1 I 
131 

The possible combinations of A and C then become the fol
lowing: 

MOD(A,C) 11 11 
11 31 
12 11 
12 31 

B .1 and D then become: 

B.l 12 I 
141 
131 
151 

D I 1 I 
131 
121 
161 

B.2 then can be equal to: 

B.2 11>2:10 OR B.1:2 ==> 21 
13>4:10 OR B.1:4 ==> 41 
12>3:10 OR B.1:3 ==> 31 
16>5:10 OR B.1:5 ==> 101 

This is an extremely simple example. Yet, the logic that must 
be used to describe it is rather complex. Even this relatively 
simple result is not straightforward. The range of possible 
values of B .2 is only four because we know the actual values. 
More often, the values passed to a given routine are not 
known but only describable functionally. In that case, the 
number of possibilities for a given variable are the products 
of the number of possibilities for its constituent parts. The 
example variables can then be described as: 

f(B.l) I f(ext(A(l)) )+f(ext(C(l))) I 
lf(ext(A(2)))+f(ext(C(l))) I 
lf(ext(A(l)))+f(ext(C(2))) I 
lf(ext(A(2)))+f(ext(C(2))) I 

4 possibilities 

f(D) lf(ext(A(l))).f(ext(C(l))) I 
lf(ext(A(2))).f(ext(C(l)))I 
lf(ext(A(l))).f(ext(C(2)))1 
lf(ext(A(2))).f(ext(C(2)))1 

4 possibilities 

B.2 lf(D(l))>f(B.l(l))=>cnst 
lf(D(2))>f(B.l(l))=>cnst 
lf(D(3))>f(B.l(l))=>cnst 
lf(D(4))>f(B.l(l))=>cnst 
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f(B. l( 1)) I 
f(B. l( 1)) I 
f(B. l( 1)) I 
f(B. l( 1)) I 

lf(D(l))>f(B.1(2))=>cnst 
lf(D(2))>f(B.1(2))=>cnst 
lf(D(3))>f(B.1(2))=>cnst 
lf(D(4))>f(B.1(2))=>cnst 
... etc. 

where "cnst" denotes a constant. 

f(B.1(2)) I 
f(B.1(2)) I 
f(B.1(2)) I 
f(B.1(2)) I 

It is obvious that the computational complexity of the analy
sis increases exponentially. Complete variable auditing of a 
particular system may not be practical due to computational 
constraints. However, the variable auditing of a given mod
ule or selected variable can often be done. Successive analy
ses will generate more information with which to tailor the 
analysis. Thus, tracing the lifespan of a given variable for 
specific reasons is often possible and useful. 

Variables, as important as they are to code, are merely vehi
cles for data. The passage of data through a system-the data 
arc-is more significant. Consider the following code: 

S A="TEST" 
S B=A 
S C=B 

In this most trivial of examples, the important information is 
not the list of variables containing the string "TEST". Rather, 
the path of "TEST" and its ultimate destination and form is 
much more interesting. It should also be noted that data can 
"fork". Consider if the value in A was not "TEST", but a 
bank balance. B is its local repository. The value in C also 
contains the same bank balance. In effect, the data originally 
in A has now forked into the variables B a,gd C, as well as 
being retained in the variable A. Each of these three variables 
can now be manipulated physically independently of the 
other two, though they could each be logically related to the 
original data in A. The arc of the data in A is continued 
through the variables A, B, and C as they are manipulated or 
until the information is destroyed or permanently stored. 

If the code were changed in the following way: 

S A="TEST" 
S A="bank balance" 
S B=A 

The arc of the data "TEST" extends no more than one com
mand since "TEST" is destroyed in the following set. In the 
above example, if the initial value of A is significant, reset
ting it-destroying the data-can have potential side effects. 
Finding such occurrences is a good result from finding out 
the data arcs. 

Simply put, M systems take in data, process it according to 
some rules as expressed in code and store it in M globals and 
the reverse. The variables that contain the data on its way to 
the global are not significant. Only the data, its operations 
and its ultimate destination are significant. 
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Consider the following code: 

MOD(S,A) 

D MOD(l,10) 
Q 

S A=A,.5 
s AG(S)=A 
Q 

From the above example, we can define the variable A and 
S in the following way: 

A.l == f(ext(A)) 
S == f(ext(S)) 
A.2 == f(A.l) [A.1..5] 

G(S) then can be described in this way: 

G(f(ext(S)) == f(A.l) 

The data residing at node f(ext(S)) is defined in a general 
form off( ext(A))*5. In effect, this analysis has yielded a defi
nition of the required operations for that particular node. This 
act has two profound side effects: 1) it is the first step in defin
ing a data dictiona'ry for the global in question and 2) it de
scribes the global transaction. 

M data handling is far, far more complex than this of course. 
At first glance, tracing the variable or data lifespan in a given 
M system appears to be an intractable problem. The method 
of solving any problem that appears intractable is invariably 
the same: solve what can be solved and then analyze the re
mainder. Such an approach can achieve significant results. 
We have found that a surprising amount of transactional in
formation can be obtained with automated methods. These 
methods are limited by the constraints described here, but 
they are useful nonetheless. 

Only variables have been covered here. Other components 
of M code are amenable to similar patterns of analysis. The 
analysis of a legacy system using these methods could yield 
dataflow diagrams, modular calling trees based on the flow 
of information through the code and the basic outlines of pos
sible transactions. 

Rewriting the Legacy System 
Once a good understanding of the operation of the legacy 
system is established, a methodology by which the system 
can be adapted to the organization's needs must be selected. 

The four kinds of approach were mentioned in the intro
duction: 

• The legacy system can be rewritten. 

• A new system can be written in-house to replace it. 

• A modem system written by some third party can be pur
chased to replace it. 
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• A wrapper can be built that puts a modem face on the old 
code. 

The four approaches are not mutually exclusive. Some com
ponents of a given system could be replaced while other com
ponents could be rewritten. If the system is just replaced or 
written anew from scratch, then rewriting is not necessary. 

However, sometimes the operation of a legacy system can 
suit an organization so well that alternatives are inadequate. 
If this is so, then the legacy system must be adapted somehow 
to the modem computing world. This can be done by hand. 
For simple changes, where the operation of the system is thor
oughly understood, or where the cost of the adaptation is no 
object, changing the system by hand could be the best de
cision. 

In other cases, the amount of information that is needed or 
the scale of the changes to be executed can make automated 
means the method of choice. 

An automatic method can be as simple as using a routine to 
change the occurrence of every string or as complex as an 
AI tool that attempts to analyze the intent in the mind of the 
original programmer. The best solution is usually a compro
mise between the two. 

We have found that most of the time spent building the tools 
supporting a recoding effort fall into two basic areas: 

• analyzing the code in sufficient detail to determine unam-
biguously the execution of the code 

• describing the code in an abstract manner. 

The abstracted code then becomes the base for manipula
tions, not the original code itself. After the abstracted code 
is modified, it is then reconstructed; code rewriting occurred 
only on code assembly: 

base code 

! 
abstracted 
code model 

! 
manipulation 
of abstracted 
model 

! 
code reassembly 

The goal is to be able to take any block of M code and recon
struct functionally equivalent code. No attempt is made to 
bring original code forward. Manipulation of the abstracted 
model would result in functionally superior code. It is also 
possible that the resulting code could be formally provable, 
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though this is not a current avenue of our research. Certainly, 
a system regenerated in this manner would be better able to 
take advantage of automated QA tools already present in the 
market. 

Regenerating code has many beneficial side effects even 
when no manipulation of the abstracted code occurs. For ex
ample, long lines can be broken down into constituent parts. 
Dependent clauses, the arguments of FORs and IFs, can be 
turned into argumentless DOs, if that is desired. Direct refer
ences to specific globals could be transformed into data dic
tionary references or processed into calls to a common filing 
or retrieving program. 

Conclusion 
The main advantage of automatically analyzed and recon
structed code is one of thoroughness and reproducibility. Ma
chines do not get tired of doing the same thing over and over 
again. If they do a thing once correctly, they will do the same 
thing correctly a thousand times. This is their virtue and why 
we use them. We have developed tools that can automatically 
analyze M code and derive an abstract model of the code. We 
are currently using these tools to derive other programs to 
both analyze M code and derive information regarding vari
ables, global transactions and data lifespan, as well as build
ing new code based on a modified abstract code model. 

We have also found the automated analysis of code reveals 
issues and problems that could only have been foreseen by 
the original authors or after great effort. The information so 
gleaned becomes grist for the mill of further analysis as well 
as the generation of other enabling technology such as data 
dictionaries, common calling tools, and the building of ad
ministrative tables. 

Techniques and algorithms such as those we have developed 
should be considered enabling technology, to be used to bring 
forward legacy systems and their inherent knowledge into the 
modern computing community. Al 

Steven Popkes is VP in charge of Research and Development of Jac
quard Systems Research. He has been using M since 1978. JSR special
izes in tools and consulting to regenerate systems by automatic 
methods. 
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Calendar 
October 15-19, 1995 

ACM' s 10th OOPSLA (Object-Oriented Programming, Systems, 
Languages, and Applications), Austin, Texas. For more informa
tion on the meeting contact the OOPSLA '95 Office, 7585 SW 
Mohawk Street, Tualatin, Oregon 97062. Phone: 503-691-0890; 
fax: 503-691-1821; email: oopsla95@acm.org. 

October 28-November 1, 1995 
Symposium on Computer Applications in Medical Care 
(SCAMC), New Orleans, LA. For information contact AMIA, 
4915 St. Elmo Ave., Suite 401, Bethesda, MD 20814. Ph: 301-
657-1291, Fax: 301-657-1296. 

October 29-31, 1995 
Healthcare Information Management Systems Society (HIMSS)'s 
NETCON '95, Keystone, CO. "The Evolving Healthcare Net
work: Growth Technologies and Applications for the Reformed 
Health System." For information call 312-664-4467, ext. 116. 

November 6-10, 1995 
MT A-Europe Annual Meeting, Barcelona, Spain. For more infor
mation, contact the MT A-Europe Office, Avenue Mounier 83, B-
1200, Brussels, Belgium. Phone: 32-2-772-9247; fax: 32-2-772-
7237. 

March 24-28, 1996 
MT A Annual Conference with Database and Client/Server World 
Conference and Exposition, Boston, MA. Registration booklet 
will be mailed early November. 

Advertiser Index 
\;;: 

We appreciate these sponsors of the September issue and all the 
companies who support the M community through their commit
ment to excellence. 

Arnet .................................................... 3 
Atlas .................................................... 7 
Career Professionals Unlimited ..................... 48 
CoMed .................................................. 36 
Cue Data ............................................... 43 
CyberTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
ESI Technology, Inc .................................. 45 
HBO & Company ..................................... 41 
Henry Elliott & Company ........................... Cover 2, 53 
InterSystems Corporation ............................ 6 
KB Systems, Inc ...................................... 49 
Kennedy Memorial Hospitals ....................... 48 
Kogan-Rose Associates, Inc ......................... 48 
McIntyre Consulting, Inc. . .......................... 48 
Micronetics Design Corporation . . . . . . . . . . . . . . . . . . . . 54 
MUMPS Audiofax .................................... Cover 4 
Pro-Med Personnel Services, Inc ................... 43 
Sentient Systems ...................................... 55 
Nathan Wheeler and Company ...................... 43 
Xtension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

This index appears as a service. to our readers. The publisher does 

not assume any liability for errors or omissions. 

September/October 1995 


