
Bee Tree

by Frederick L. Hiltz, Stage Manager

M databases are faster and more com
pact than others. How does this hap
pen? Most M implementations store
global variables in the fixed-size
blocks of a disk with a tree structure
called the B tree.

M programmers know trees. We de
scribe them in the customary computer
science orientation, root at the top and
leaves at the bottom, using these terms:

A node is one global variable
identified by a key composed of
the global name and subscripts
and optionally containing data.
The global name alone identifies
the root, from which all other
nodes descend. Every node has a
depth, the number of subscripts in
the key. Its siblings are other
nodes at the same depth, its chil
dren are its immediate descendant
nodes, and its parent is the node
from which it descends.

Three characteristics define a B tree:

• A node may have many children.

• All data are stored in the leaves.
Higher nodes contain only keys and
links to other nodes.

• The depth of all leaves is the same.

M globals are definitely not B trees:
they may contain data at any level, and
leaf nodes may have different depths. ~

The B tree is, however, an excellent
structure for the disk blocks that store
M globals. The rest of this story is
about the embedding of an M global' s
nodes into a B tree of disk blocks.

Let us begin building a B tree the way
you would begin a pyramid, with the
blocks on the bottom, the leaves that
hold the data. One or more nodes of

September/October 1995

an M global occupy a block; thus the
size of the block limits the size of a
node. Each node consists of a key (de
rived from its global name and sub
scripts) plus its data, and the nodes
dwell in collating sequence. In addi
tion to these nodes, the block contains
a pointer to its sibling where the se
quence continues.

The leaf blocks form a sequential file
of nodes that a program may traverse
with $QUERY. Random access,
however, requires a way to find nodes
anywhere in the sequential file.
Blocks at the next higher level, called
index blocks, accomplish this. Each
index block contains pointer nodes in
collating sequence. A pointer node
comprises the key of the first node in
a data block plus the number of that
data block. Index blocks also contain
pointers to their siblings.

The index blocks, therefore, form a
sequential file of pointers that is much
shorter than the file of data blocks (a
typical index block contains pointers
to 20 to 50 data blocks). One could tra
verse the index file quickly to find the
number of the block that holds a data
node, and many database products do
exactly this, calling it the indexed se
quential access method (ISAM).

Traversing the index blocks would be
slow for large files, so the B tree adds
another layer of index blocks above,
containing pointer nodes to the index
blocks below. At this point, a 200-
Mbyte global stored in 4-Kbyte
blocks might look like this:

<- 40 index blocks ->
<-- 1250 index blocks ->

<--- 50,000 data blocks --->

JUST ASK!

To complete the B tree, add more lev
els of index blocks, each about 1140th
the size of the level below, until the
top level contains just one block, the
root. Now one can locate any node of
our 200-Mbyte global by reading and
searching just four disk blocks:

1. Read the root block.

2. Search the block for the key that fol
lows the desired key. Then back up one
node, get the pointer to (block number
of) its child, and read that block.

3. Perform step 2 twice more, ending
by reading the data block that contains
the desired node.

4. Search the data block for the key
of the desired node.

To insert a node, search in the same
manner for the node that follows the
new node, and insert the new node into
the data block. If the new node is first
in that block, visit its parent index
block and replace the former first
node's key with the new node's key.
The new key might be first in the index
block; then its parent block requires
the same substitution of the new key
and so on until reaching the root.

What if the data block does not have
room for the new node?

1. Split the block by finding a new
unused block and moving the last half
of the nodes into it.

2. Visit the parent block and insert a
pointer node containing the number of
the new block and the key of its first
node.

3. If the index block does not have
room for the new pointer node, apply
steps 1 and 2 to it and so on until reach
ing the root.

Al COMPUTING 31

After many insertions the root block
must be split. The tree cannot have
two roots, so one creates a new parent
block and inserts pointer nodes to the
pair; the tree grows one level higher.

Deleting a node is the converse of in
serting a node. When adjacent sibling
blocks gain sufficient empty space,
they are merged, and the pointer to the
now-unused block is deleted from the
parent node. After many deletions the
root has just one child; the root may be
discarded, the child becomes the new
root, and the tree shrinks one level.

Knuth demonstrates that, after many
random insertions and deletions, blocks
are 60% to 70% full on average.[1]

This completes the textbook descrip
tion of the B tree. Practical implemen
tations apply several techniques to
improve speed and storage efficiency:

Clever derivation of a key from the
global name and subscripts permits
rapid comparison of keys while pre
serving the M collating sequence. Ad
jacent keys contain many common
leading characters; "key compres
sion" eliminates the redundant char
acters among those that occupy the
same block. Some trailing characters
are not needed to distinguish keys in
index blocks; they may be omitted.

Index blocks may differ in size from
data blocks, and they may reside in
separate files of the operating system.
When a B tree is built in collating se
quence, as from an ordered sequential
file, blocks may be close to 100% full.
The downward pointers and sibling
pointers provide redundant descrip
tions of the tree structure that may be
used for checking and restoring the in
tegrity of the database after an acci-

dent. A cache of disk blocks keeps
most high-level index blocks and re
cently used data blocks in memory,
dramatically increasing speed.

Knuth provides the classical textbook
treatment of several variations on the B
tree including derivations of their dy
namic behavior.[1] Lewkowicz pres
ents an excellent description of the B
tree in the M environment. [2] M

Endnotes
1. D. E. Knuth, The Art of Computer Pro
gramming (Reading, MA: Addison-Wes
ley, 1981).
2. J. M. Lewkowicz, The Complete
MUMPS (Englewood Cliffs, New Jersey:
Prentice Hall, 1989).

Frederick L. Hiltz, Ph.D., develops medical
information system software at Brigham and
Women's Hospital, Boston, Massachusetts.

M Technology: Integrating the Best

M TECHNOLOGY ASSOCIATION EUROPE
20th ANNUAL MEETING

BARCELONA 8-10 NOVEMBER 1995

32 M COMPUTING September/October 1995

