
1995 DISTASO STUDENT AWARD

A Perfortnance Analysis of Relational
and Hierarchical Database Packages
based on Query Response

by Warren G. Weis

Each year the M Technology Association sponsors a student
research competition for which full-time students submit pa
pers expressing original ideas and research efforts related
to the M language. The Student Research Award is made pos
sible by contributions to the Michael Distaso Memorial
Fund. The MTA is honored to present this year's award to
Warren G. Weis, a graduate student at the University of Cali
fornia, Davis.

Abstract
The Oracle, FileMan, and M/SQL commercial database
packages and a database of the author's own devising are ana
lyzed and compared for performance on data retrieval opera
tions. This is done by setting up a database on each package
and timing data retrieval operations. The implementation of
this experiment is described and the results made available
for eight timing runs on databases based on from 5,000 to
40,000 records increasing in increments of 5,000. Some ten
tative conclusions are drawn, and the author's own observa
tions on factors he believes may have affected the results are
discussed along with possible areas of improvement for each
database package.

1. Introduction
This paper is based on a study supported by the Department
of Veterans Affairs (VA). The purpose of this study is to com
pare the performance of VA FileMan version 20, a database
package developed and maintained by the VA, with the per
formance of three other database packages: M/SQL, a
MUMPS based database package developed by InterSys
tems; Oracle, probably the most prominent relational data
base package on the market today; and an ad-hoc pure
MUMPS database developed by the author. It was decided
early on to limit the scope of this investigation to a study of
how well these products do on query response. That is, how
quickly a data retrieval request is satisfied. As queries may
well constitute up to 90% of the operations of a typical data
base, this seemed like a good criterion to judge the ability of
a database package to satisfy the needs of its users. What
follows is a summary of the initial results.

18 M COMPUTING

2. Evaluation Issues
The typical query can be broken down into three phases:

1.) The user supplies information necessary to perform the
query.

2.) This information, assuming it is sufficient to retrieve data
from the database, is transformed into a form which the data
base package can use. The appropriate searches and/or sorts
are performed. The retrieved information is put into some
sort of storage.

3.) The retrieved information is transformed into a form visi
ble to the user.

This last step may be skipped if the purpose of the data re
trieval is to perform a backup.

The next step was to determine what quality of a query to
judge performance on. Should user friendliness be consid
ered here, or the more obvious quality of'9uickness of re
sponse? It was decided that time would be used to judge per
formance. Performance, in terms of time needed to perform
the operation, is easier to measure than such abstract qualities
as user friendliness. Nevertheless, I mention this quality here
as I do not believe it should be overlooked in the evaluation
of database packages. The ease with which the average user
can find the most effective means to implement his or her
request must contribute, in an indirect way, to the overall
performance of a database.

Another fundamental problem was which database model to
base the performance analysis on. FileMan is a database
package which was designed to implement databases based
on the hierarchical model. Oracle is a package which seeks
to implement as closely as possible the relational database
model as conceived of by C. J. Date and E. F. Codd1

• I
wished to judge performance of the various packages as
closely as possible and felt that comparing a hierarchical da
tabase with a relational one would be comparing apples to
oranges: It would be too easy to set up the hierarchical data
base structure such that it optimized query tests to the disad
vantage of the relational database. On the other hand, a strict
hierarchical model does not have the flexibility of the rela-

September/October 1995

tional model. If sample databases were to be implemented in
strict hierarchical and relational form, then there might be
queries which would prove either extremely difficult or im
possible for the hierarchical database to satisfy. I decided to
implement a relational model on all database packages and
made an interesting discovery: Relational models can be im
plemented relatively easily on hierarchical packages.

The last consideration was to what degree each database
would be optimized. The concern here was that this could
very well tum into a contest of my ability to optimize one
database package versus another. It seemed unlikely that this
would prove to be equal. I therefore decided to do the abso
lute minimum necessary to set up each database. There were
two reasons why this approach was of interest. First, it might
come closer to the performance a naive user might expect to
get from each database package. Second, it would be possible
to see the absolute minimum in performance each database
package had to offer. As an objective measurement I hoped
this would prove relatively easy to achieve.

..,,

Having determined that the model to be implemented was to
be relational and that time was to be used in judging perfor
mance, the question became which of the three phases men
tioned above to measure. The speed with which phase 1 is
completed is up to the user. The speed of phase 3 depends
on how fast the operating system can do I/0. As only phase
2 is entirely in the hands of the database management system,
I decided to time phase 2. Time was measured in terms of
overall time needed for the query .. That is, instead of using
a breakdown of time into user, cpu and system measurements
as is done with the UNIX Time command, actual real time
was measured in seconds and microseconds using a SUN li
brary function measuring microseconds and seconds in actual
system time.

In order to make the analysis as impartial as possible all four
databases were isolated on a single SPARC workstation. This
workstation had 16 Megabytes of memory and a 2 Gigabyte
hard drive. During timing runs no user activities are allowed
on the workstation.

3. The Database Population Chosen
The backup of a large hospital database consisting of 400,000
records was made available by the IDX Corporation located
in Vermont, which is conducting a similar study. This data
base was stored in the form of a large MUMPS global called
APT (short for patient) using the InterSystems utility function
A%GO. Each record of a patient is stored by ID number. The
ID number is used as the first subscript of the global. A sec
ond subscript is used as an identifier for a specific table in the
record. Thus, all records for patient 100 can be found under
APT(lO0). Data for a table of general patient information can

September/October 1995

be found at location APT(l00,0). Data for patient lOO's guar
antor can be found at location APT(l00,4). Each field of each
table is separated by a single delimiter consisting of the char
acter A'. This delimiter is also the standard delimiter for File
Man tables which made transformation of the database to
FileMan format easier. In summary, the format for table zero
for patient 100 would look like this:

APT(lOO,O)=AlAA2AA3AA4AA5 ... 2

There are about thirty such tables. For the purposes of this
study the five tables which appeared to be most densely popu
lated were chosen. A brief of each table follows:

APT(id, O)=AlAA2AA3 ...

Fields used:
Al= Patient Name
A2=Patient Social Security
A3=Patient Sex
APT(id,3)=AlAA2AA3 ...
Fields used:
A2=Activating Operator

APT(id,4)=AlAA2AA3 ...
Fields used:
Al=First line of Guarantor's address.

APT(id,5)=AlAA2AA3 ...
Fields used:
Al=Patient Employer
APT(id,60)=AlAA2AA3 ...
Fields used:
A2=Is father a Veteran? (yes/no)

4. The Database Implementation
On Oracle
As mentioned earlier, Oracle is probably the most widely
used implementation of the relational database model on the
market today. The relational model, as opposed to the hierar
chical is based on essentially independent tables loosely
linked to each other by data or keys which are common to
the linked tables. Every row of every table must be uniquely
identified by a primary key. Related tables are linked by for
eign keys. When data from more than one table is being re
trieved in a query, these tables are said to be joined on a field
whose value is the same in each. In the database above, for
example, each table is linked or joined by the patient ID. I
could, of course, join tables on a different field if I wished
to: For example, the Sex field in Guarantor and Patient if I
wished to retrieve all references to male patients or guaran
tors in the database. The interested reader is referred to any
number of excellent references for a more detailed descrip
tion of this model. 3

Oracle is a Relational Database Management System which
runs on top of a host operating system. It has its own storage
space allocated when the system is set up and its own caches

,. COMPUTING 19

to speed up execution of frequently executed commands. Re
cords may or may not be physically located near each other.
If the system administrator requests data clustering then an
effort is made to do so. Fields of a record may be indexed
using a B or B + tree structure. 4 The primary key of a table
row is always indexed. 5

The main driverof the Oracle RDBMS, SQLPLUS, uses the
SQL query language to retrieve and modify data tables. In
addition, in the last few years Oracle has introduced PL/SQL,
a pseudo programming language strongly modeled after the
programming language ADA to enable the database pro
grammer to perform blocks of SQL statements. PL/SQL has
the additional advantage that compiled versions of its SQL
statements are stored rather than being interpreted at run time
as is the case with command line SQL queries.

For the implementation of the /\PT database on Oracle, each
patient record was split into flat files containing only rows for
a single table. The patient ID was added onto the beginning of
each table entry and serves as the unique identifier (primary
key) for each row. Relational tables were then set up for the
Oracle database corresponding to the entries contained in
each flat file. See appendix A for the table definitions. (Con
tact MTA for a copy of the Appendix.) These tables were
used as the model for the database implementation in the
other database packages.

5. Queries
Queries on Oracle were written as PL/SQL procedures. There
were two reasons for this: First, it was quite easy to eliminate
user input and 1/0 from timing considerations, leaving only
phase 2 as described above. Second, PL/SQL is generally a
faster means of retrieving data than entering an SQL state
ment because PL/SQL programs are stored compiled rather
than being interpreted at run time as SQL statements are. 6

See appendix B for the code used to create the procedures.
(Contact MTA for a copy of the Appendix.) As with the table
definitions, queries were made as similar as possible across
database packages.

6. The Database Implementation
On FileMan
FileMan is a database package which was originally devel
oped in 1978 by a group of programmers working at the VA
under the direction of George Timson. 7 The 21 st version of
FileMan, including, forthefirsttime, a query optimizer, was
recently released. FileMan was originally developed on an
older version of MUMPS than currently exists. The structure

20 Al COMPUTING

reflects this. As FileMan is in the public domain, the code
can be viewed directly. More modem additions to the lan
guage such as "$Get" and "New" appear only occasionally.

Each table is considered to be a "File". Provision is made
for repeating fields, something not allowed in the relational
model.

In order to compare FileMan performance as closely as possi
ble to its Oracle equivalent, Files were constructed for each
of the Oracle tables. In order to make relational joins possi
ble, an additional file was created consisting of nothing but
the patient ID, followed by pointer fields to each row in each
File corresponding to the same patient ID.

The FileMan database looks something like this:

Pointer Table (PtrTable)
PatientID

Table One

Where

ID= PatientID

Table Two

Where

ID=PatientID

Table Three

Where

ID=PatientlD

This structure draws inspiration from an article by Tami K.
Winn and Maureen L. Hoye. 8 It proved to be quite easy to
simulate the relational "joins" of Oracle using this structure
with the added advantage that joins on the PatientlD field
were implicitly defined. A subtle difference between Oracle
and FileMan is that, by default, selected data which includes
one or more null fields is not output in Orade (an inner join).
In FileMan such data is an outer join. The global ADIZ is the
default global used for storing data from user files. The first
entry for the FileMan equivalent of the Oracle Patient table
is therefore:

ADIZ(l000,1,0)=lOOAWAGER,JOHN
1111AMA44828/\A/\7A8Q2-000-0000A625000

MAlll-11-

A single index was created by default: The index for tlris entry
is:

ADIZ(lOOO,"B",100,1)=""

which may be interpreted as patient ID 100 points to the first
record.

Note the use of numbers instead of strings for subscripts. File
Man started out using exclusively numbers instead of strings
because it was originally written before string subscripts were
added to the language. The entry in the pointer table pointing
to this entry looks like:

ADIZ(lOOl,l,O)=lOOAlAlA

September/October 1995

Piece two of the data points to the corresponding entry in the
Patient file.

There are three different options in FileMan for the retrieval
of data: Print File Entries (option 2), Search File Entries (op
tion 3), and Inquire To File Entries (option 5). Search can be
used to do anything the other two can do but appears to be
the most resource intensive.9

The equivalent of query five is shown here:

VA FileMan 20.0

Select OPTION: ?

ANSWER WITH OPTION NUMBER, OR NAME

CHOOSE FROM:
1 ENTER OR EDIT FILE ENTRIES
2 PRINT FILE ENTRIES
3 SEARCH FILE ENTRIES
4 MODIFY FILE ATTRIBUTES
5 INQUIRE TO FILE ENTRIES
6 UTILITY FUNCTIONS
7 OTHER OP..!l'.IONS
8 DATA DICTIONARY UTILITIES
9 TRANSFER ENTRIES

Select OPTION: 3 SEARCH FILE ENTRIES

OUTPUT FROM WHAT FILE: PtrTable/1

A- SEARCH FOR PtrTable FIELD: 1:2
A- CONDITION: 1 NULL
B- SEARCH FOR PtrTable FIELD:
IF: A// 1:2 NULL
SORT BY: PtrPatientID//
START WITH PtrPatientID: FIRST//

FffiST PRINT FIELD: 1:1

By 'l', do you mean PtrTable 'PatientPtr'?
YES// (YES)
By '#1', do you mean Patient 'PName'?
YES// (YES)

THEN PRINT FIELD: 2:2

By '2', do you mean PtrTable 'RecordPtr'? YES//
(YES)
By '#2', do you mean Record 'ROperatorAct'? YES//
(YES)

THEN PRINT FIELD:
HEADING: PtrTable SEARCH//
STORE PRINT LOGIC IN TEMPLATE:
PtrTable SEARCH

It proved to be much more difficult to isolate phase 2 in File
Man, because of the interactive nature of this program and
its heavy reliance on the construction of customized strings
which are then executed using the "Xecute" command. It was
necessary to alter the actual database code to eliminate 1/0
and to insert timing statements. The solution was to take a
"snapshot" of the local variables and globals used to imple
ment the queries and read/write statements. Routines were

September/October 1995

written for each of the queries overwriting each of the essen
tial variables with strings that had been edited to remove all
read and write statements. The Global ;\UTILITY and various
local variables were overwritten in the FileMan routines
DIP5 and DI02. Timing statements were added in FileMan
routines DIP5 and D104. Hopefuly, this represents as accu
rately as possible all database activity except user interaction
and console 1/0.

7. The Database Implementation
on M/SQL
M/SQL was especially interesting because it allows the pro
grammer the option of embedding SQL statements directly
into MUMPS code thus providing the best of both languages.
In addition, the package provides a good user interface. 10 It
was possible to directly compare the embedded SQL feature
directly with Oracle performance by setting up M/SQL tables
along the lines of the Oracle tables mentioned above. Small
MUMPS programs with embedded SQL statements were
written in order to compare query performance. Here is the
M/SQL implementation of query seven:

query(name)
;3-way join based on non-indexed field.

new gdata,rdata,pdata
&SQL(SELECT

GName,ROperatorActivate,Patient INTO
:gdata, :rdata,:pdata
FROM Guarantor,Record,Patient
WHERE Guarantor=Patient AND Record=Patient

AND PName IN (SELECT PName FROM Patient
WHERE PName=:name))
quit

8. The Database Implementation on
the Ad-Hoc Database
This implementation is an attempt to show what the perfor
mance of a customized MUMPS database might be. The /\Pf
global was adopted as is, and a series of small routines were
written to retrieve the same data from it a:s that of the queries
on the other databases. Such customized routines might be
written for queries where the performance must be at a pre
mium. The equivalent of Oracle query 8 is shown:

query8(id)

new GData,RData,PData,PEData,x
s PData=$g(APT(id,O))
if $p(PData, 11 A11 ,l)='"' quit
s

GData=$g(APT(id,4)),RData=$g(APT(id,3)),PEData=
$g(APT(id,6))
set x=$p(GData, 11 A11 ,3),x=$p(RData,"A",2)
set x=$p(PData, 11 A11 ,l),x=$p(PEData, 11 A11 ,l)
quit

Al COMPUTING 21

9. Performance Analysis
The queries developed for testing are briefly described be
low. Some queries were used for more than one test. See also
Appendix A. (Contact MTA for a copy of the Appendix.)

J Test: Pwpose: ·

l (query l) Retrieve the name field from the Patient table (an in-
dexed based search).

2 (query l) Same as l only this is an unsuccessful search.

3 (query 2) Get the PatientID from Patient searching on an input
name. (non-indexed)

4 (query 2) Same as 3 only this search is unsuccessful.

5 (query 3) List the IDs of all Patients whose Social Security Num-
ber field has a value of NULL. (full table search)

6 (query 4) Get Activating Operator (field two) from the Record ta-
ble and Patient name from Patient.

7 (query 5) Same as 6 only the Social Security must be NULL.

8 (query 6) Same as seven with Guarantor Name from Guarantor
being added (data retrieval from 3 tables).

9 (query 7) GName from Guarantor
ROperatorAct from Record
Patient ID from Patient
where the name of Patient matches an input string.

10 (query 7) Same as 9 only no match is made.

II (query 8) Gname from Guarantor
ROperatorAct from Record
PName from Patient
PEEmployer from PEmployer
where the id field matches an input number

12 (query 8) Same as 11 only no match is found

13 (query 9) GAddressLl from Guarantor
ROperatorAct from Record
PName from Patient
PEEmployer from PEmployer
for all male Patients (PSex='M')

14 (query 10) GAddressLl from Guarantor
ROperatorAct from Record
PName from Patient
PEEmployer from PEmployer
where the PSocialSecurity field in Patient is not NULL
and the FVeteran field from PFather is 'Y'

15 (query 11) Aggregate function returning the sum of all Patient IDs
(well, I had to think of something).

16 (query 12) Count the number of male Patients whose Fathers are
veterans (PSex = 'M' .and PFather.FVeteran = 'Y')

10. Results:
A total of 8 runs of these 16 queries were conducted on each
database. Each run consisted of four repetitions of the same
sequence of queries. The size of each database was increased
in increments of 5,000 records. The first database, therefore,
was based on 5,000 records; the second on 10,000; the third
on 15,000 up to 40,000. The results follow but should be
prefaced with remarks on some unique characteristics which
were discovered in the performance of each database pack
age. These are summarized below:

22 Al COMPUTING

M/SQL Results:
M/SQL results are incomplete as of the writing of this article.
This is because initial results indicated that there would not
be time available to complete all runs for this database pack
age. The results of three runs done with minor changes after
each one are shown below. Each run was done five times.
Each result shows the average time in seconds needed to com
plete the query based on the five executions of the run and
the query for this run. The line below each result shows the
standard deviation, in seconds, of the five executions for each
query. In query 8, for example, run one yielded an average
execution time of 17010 seconds and a standard deviation of
33 seconds. In run two, this average time went down to 192
seconds and a standard deviation of 0. 25 seconds. In the final
run the execution time went down to 3 seconds and a standard
deviation of 0.1 seconds.

Query Test Run One Run Two Run Three

I 0.536452 0.231981 0.234678

0.000342 0.001117 0.002642

2 0.244356 0.236292 0.237981

0.00672 0.004806 0.007647

3 22.286717 l.703751 l.973717

0.3765 0.018318 0.235389

4 17.387702 l.696480 2.ll4602

0.94321 0.022988 0.432771

5 17.046481 l.735170 2.063224

0.084321 0.013759 0.296699

6 34.254476 3.260471 3.630660

l.234156 0.015173
\;-'

0.014569

7 16724.069 191.55050 2.542191
26 2

11.342156 0.628771 0.144172

8 17010.261 192.63787 3.022954
76 8

32.784324 0.252939 0.101950

9 1425.9564 96.465887 0.363332
32

10.43256 0.169739 0.020138

10 1459.9738 1510.6754 l.851605
50

13.46433 0.12435 0.034866

11 6.222821 1.307689 l.402059

0.485533 0.008173 0.030974

12 4.921797 1.315837 1.398281

0.134256 0.007716 0.051220

13 19784.808 165.42830 3.727501
74 7

34.623341 0.170953 0.101309

14 28863.683 256.65976 56.896467
07 4

54.788234 0.951355 2.278988

15 19.873174 l.966264 2.020634

1.342566 0.023539 0.028052

16 3021.2842 54.859249 55.579616
34

43.522667 0.706744 0.079765

Explanation:
The first run shows the results of nearly precise equivalents
of the Oracle PL/SQL queries being run on M/SQL.

The second run was done after consulting with Intersystems,
the product owner. I realized that I had neglected to provide
the M/SQL query optimizer with accurate statistics on the
nature of the database. The database administrator should
provide the optimizer with approximate figures on the num
ber of rows in each table and the number of unique values in
each field. This information was updated in the data diction
ary and the same query sequence was run again.

The last run was done after a careful look at the SQL code
written to do the queries. As can be seen, running time has
gone down significantly. Query tests nine and ten especially
show dramatic improvement. Tests nine and ten were run
using the code in routine "guery7 which can be seen above.
The problem with the original code was that the running time
could potential_ly be O(N/\2) as first the fields are selected
from the Guarantor, Record and Patient tables based on Pa
tient ID, which is an indexed field, and then the entire Patient
table is searched looking for a match for the parameter name.
This could be followed by potentially N repetitions of this
sequence of actions for a name with no match in the database.
Rewriting this code reduced this to an O(N) operation:

SELECT Gname, ROperatorAct, Patient
FROM Guarantor, Record, Patient
WHERE Guarantor=Patient AND Record=Patient
AND Pname=:name;

In general, the M/SQL optimizer tends to perform better on
select statements which do not use embedded select state
ments. For example:

SELECT name, id from Patient
WHERE id IN
(SELECT id FROM Admitted);

This statement could be rewritten as:

SELECT name, id FROM Patient, Admitted
WHERE Patient.id·= Admitted.id;

The staff at Intersystems indicated that it is possible to pro
vide "hints" to the M/SQL optimizer by using the ORDER
BY command to tell the optimizer which fields to search by
first. ORDER BY is used to indicate which fields to sort by.
If the above statement was sorted by name, for example, I
would write:

SELECT name, id FROM Patient, Admitted
WHERE Patient.id= Admitted.id
ORDER BY name;

September/October 1995

Oracle Results:
The Oracle cache may play quite a substantial role in query
performance. There are two observations which lead me to
conclude this. The first is that performance varies quite con
siderably from the first repetition of each query sequence to
the second. An extreme example is a run where query test
one took 15 seconds on the first repetition and 1.5 seconds
on the second. Similar results may be seen when a program
is first loaded into memory on any cache based machine. In
this case it is the actual queries which are not present in the
cache at the start of each run. The second observation is that
the standard deviation for the queries is quite high for the
oracle run statistics. The standard deviation was as much as
50% of the average for some. It was thought at first that the
results had been skewed by the minimal operating system
activities allowed. The standard deviation for the other data
base packages is, however, nowhere near the level of the Ora
cle statistics, and it must be concluded there is some factor
at work here not present in the other database packages.

FileMan Results:
FileMan shows increased time needed in terms of the number
of fields involved (not tables). This may be due to the fact
that the modified version of File Man goes through all the mo
tions of printing the data retrieved to the console without actu
ally doing the system I/0, and the costs of printing these
fields may actually outweigh the cost of searching for them.
For queries one and two the FileMan option "INQUIRE TO
FILES" could have been used as well as the standard query
option "SEARCH FILE ENTRIES". Option 2 "PRINT FILE
ENTRIES" was used for tests 6, 11 and 12.

Ad-Hoc Results:
Of the four databases, these results are the most uniform and
predictable which is not surprising since there is very little
in the way of code beyond the bare minimum needed to exe
cute the query here.

Results:
Please see the appendix following this paper. (Contact MT A
for a copy of the Appendix.)

Conclusion:
Which database package performed the best? Before drawing
any conclusions it should be noted that each database package
could have performed much better. The astute observer will
notice that each database is allowed only one indexed field,
namely the unique identifier of each table row. Whenever

M COMPUTING 23

possible the default options were chosen when each database
was set up. For the ad-hoc database, performance would have
been better if more of the data had actually been in the sub
scripts.11 This was done for the reasons mentioned in the in
troduction. The initial approach to each package hopefully
reflects what any first time user might do: address the big
picture first and fill in the details later. I was also interested
in just how easy it might be to gain acceptable performance.
The fastest database package in the world will be of limited
benefit if it requires an enormous amount of knowledge to
fine tune it. With the knowledge gained from this first round
of performance analysis, the goal will be trying to make each
database run as fast as possible in the future.

Clearly the ad-hoc database performed the best overall. This
indicates that a customized database written by a program
ming team is still the best solution if performance is sought
at all costs. Unfortunately, the issue is not that simple. Data
bases change in nature over the years, and what may have
been a good solution five years ago may no longer work to
day. It would be easier to buy the latest version of a database
package such as FileMan and to change the database with the
help of this package rather than maintain the original pro
gramming team. Nevertheless, this sort of customized pro
gramming may be necessary if some queries must absolutely
perform within a specified time.

M/SQL results indicate that better results may be achieved
where careful attention is paid to the text of the code and to
the maintenance of statistics for the optimizer. M/SQL results
can vary quite widely based on the degree to which this is
done. An automated tool to update the statistics on the current
state of the database would help to improve performance and
would take some of the burden of maintaining optimizer per
formance off the database administrator. The following code
was used to find the number of rows and unique field values
for the Patient table. Something like this could be generalized
into a utility routine which could then be used by the database
administrator to provide the query optimizer with exact statis
tics on the state of the database:

Start(PC)
;PC is number of pieces in the data section.

new hl,j,RC,Uniq

;initialize the unique count for each field.
for hl=l:l:PC s Uniq(hl)=O

set hl=$o(APatient(2,0, '"')) ,RC=O
;get first element
f s hl=$o(APatient(2,0,hl)) q:hl=""

;print results:

s RC=RC+l d Dist

write ! , "There are ",RC," rows in APatient"

24 Al COMPUTING

f j=l:l:PC w !,"There are ",Uniq(j)," values for field

"' j
kill ATemp

;main routine ends here
quit

Dist

Ch

f j=l: l:PC s h2=$p(APatient(2,0,hl), $c(1), j) i
$d(h2) d Ch
quit

if h2="" quit
i $d(ATemp(j ,h2)) =O sATemp(j ,h2) ="", Uniq(j)
=Uniq(j)+l
quit

I **********Run Results **************
2d5>do StartAGetStats(l0)
There are 1000 rows in APatient
There are 993 values for field 1
There are 632 values for field 2
There are 3 values for field 3
There are 967 values for field 4
There are 5 values for field 5
There are 6 values for field 6
There are 21 values for field 7
There are 837 values for field 8
There are 995 values for field 9
There are 0 values for field 10
12d5>

If possible, an effort should be made to make run time less
dependent on the input code. My experience with query
seven is something which could happen to the user writing
an "on the fly" query.

It is more difficult to say which of the two R!ckages, File
Man20 or Oracle, performed better. Oracle performance was
outstanding on test 3 and 4, a search retrieving a single field
from a single table based on a non-indexed search. A chart
of the performance of the respective databases here follows:

Query 4 Performance (Single Record Retrieval from a single table)

100r--------------------~
90

80

70

60

40

30

20

10,000 15,000 20,000 25,000

I FileManl
1-x-Oracie I
1-+-Ad-Hoij

30,000

Number of Records in Database

Chart 1

35,000 400,0

September/October 1995

r

I
)

·,

Possibly Oracle builds an index on this field in memory which
it then uses in subsequent queries to reduce running time.

Oracle performance declines markedly as the number of re
cords retrieved goes up:

500

450

400

350

300

l!
6 250 :

200

150

100

50

10,000

""'

Query 5 Performance (Full Table Scan on a single table)

15,000 20,000 25,000

Database Size in Records

Chart 2

r:«-=---fileManj
I-tr-Oracle ·

[-+-Ad-Hoc j

30,000 35,000 40,000

The final chart shows another characteristic of Oracle: As
the complexity of the query goes up performance also goes
down:

I s
E
.5
~ 4

/'

Perfonnance on Query 14 by Natural Logarithm

:-:..-=. model __ --- ___ ---

-t-F1JeMan ~ ~- '!!.. .-.-•- -
----6-Ad~hoc database ._ ... -

/;

_ ...
,,f~ ,,.

-------..-

--·

O+----+-----+----....... ----+-----+----t-----1
of 5000 of 10000 of 15000 of 20000 of 25000 of 30000 of 35000 of 40000

Sia

Chart 3

The model curve is based on the function
f(x)=0.00000049158 * X to the second power, which was
determined using the Least Squares Method.

This indicates a possible optimization strategy for Oracle
which will be pursued in the next part of this study: If Oracle
does well on simple queries and poorly on complex ones,
then perhaps the larger queries could be broken down into
smaller ones.

September/October 1995

It should be mentioned here that certain queries are bound to
be performed more often than others. The average perfor
mance of a database should be a weighted average of the que
ries presented with those performed frequently receiving the
most weight. Many of the queries I have designed would not
be performed more often than once a week. Certainly, a.query
such as query one, requesting information on a specific pa
tient, would be performed quite often. Hierarchical perfor
mance here is simply not to be outdone. Thus for the every
day operations on a database, FileMan may perform better
than Oracle. In addition, the programmer is in much more
control with the FileMan or M/SQL database. If it is neces
sary to write a customized routine which goes directly to the
data structure this can be done. With Oracle, it is always nec
essary to work through the data management system.

Some observations on FileMan:
It is difficult to modify and/or debug FileMan code. This is
due to of the extensive use of "Xecute" and of naked globals.
Often strings to be executed contain an embedded xecute
command. It was often difficult to determine which variable
was being referred to. The extensive use of "xecute" may also
have some effect on performance. It is unfortunate that string
subscripts are not made more use of. This would also cut
down on execution time.

Some observations on Oracle PL/SQL:
The following procedure will compile without errors. If this
procedure is run it will crash the system:

CREATE OR REPLACE PROCEDURE query_bug(PPatientID
IN NUMBER) IS

BEGIN
name_data CHAR(3O);

SELECT PName INTO name_data FROM Patient
WHERE PPatientID = PPatientID;

END query_bug;

The reason this query fails at run time is that the parameter
passed in matches a field name in the table being searched
resulting in an ambiguity the system cannot handle. Appar
ently a PL/SQL procedure with this problem actually dis
rupted an organization's processing for many weeks. 12

The following query will compile and run but will not pro
duce the desired results:

SELECT PName FROM Patient WHERE PSocialSecurity =
NULL;

The proper syntax for the information desired is "IS NULL"
not"= NULL". 13

These are some of the hazards confronting the user of PL/
SQL today. In addition, the programming environment is not

M COMPUTING 25

a friendly one. There is no debugger and it took a day or two
to figure out how to do simple screen output for debugging
purposes because screen output is not an integral part of PL/
SQL.14

All the packages studied thus far have had their advantages
and drawbacks. What came as a surprise, was how easy it is to
make a hierarchical database package perform as a relational
one. The relational model is a quite powerful one and has had
a great deal of influence on database design in recent years.
Perhaps the flexibility of this model can be combined with
some of the performance advantages the hierarchical storage
system offers in order to capture the best of both worlds. My
special thanks to the InterSystems C01poration, the IDX Cor
poration and the Department of Veterans Affairs for all the
help and advice given in completing this study. Ill

Warren G. Weis is completing the degree requirements for a Master
degree in computer science at the University of California, Davis.

End Notes
1C. J. Date An Introduction to Database Systems. page 269.
2Database Protocol from IDX. Faxed on September 21st.
3Database Systems Vol 1, Part ID by C.J. Date contains a good descrip
tion by the originator of the relational model. Other sources I have found
to be quite good are Database System Concepts by Henry F. Korth
and Abraham Silberschatz and Fundamentals of Database Systems by
Elmasri and Navathe.
4Dr. Richard Walters. Conversation.
50racle RDBMS Database Administrator's Guide, Vol 1, Chapter 1
6Mastering Oracle7 & Client/Server Computing by StevenM. Bobrow
ski. page 123.
See also Oracle Manual on PL/SQL chapter one.
7Transcript of an interview with George Timson conducted members
of the San Francisco ISC staff on May 7th, 1991.
8Relational Features of VA FileMan. Tami K. Winn and Maureen L.
Hoye.
9See Page 59 of the VA FileMan 20 User Manual
1°Mouse support is expected to enhance the interface in the near future,
however. Bob Chapski @Intersystems. Conversation.
11See Walters, Richard "Database Optimization: An Overview" in
MUMPS COMPUTING, vol 22, no. 5.
120racle Performance Tuning by Peter Corrigan and Mark Gurry.
pg.137.
13 Oracle's treatment of NULL conforms to ANSI standards which state

that:
NULL is never equal (=) to anything.
NULL is never NOT equal (<>) to anything.
Any relational comparison with NULL such as less than or (<) or
greater than (>) is always false.
Oracle Performance Tuning Page 150.

Perhaps it would be helpful, however, for the compiler to issue a warn
ing that no rows will be returned. This might avoid some potential mis
understandings.
14This involves turning on the terminal output environment variable
("set serveroutput on") and using the "putline" procedure from the
package dbms _ output. To write the string "Hello world" onto the termi
nal screen one would , for example, write the code line
"dbms_output.putline('Hello world')."

26 Ill COMPUTING

List of References
Bobrowski, Steven M. Mastering Oracle7 & Client/Server Computing.

Alameda, CA: SYBEX, Inc., 1994.
Corrigan, Peter and Mark Gurry. Oracle Performance Tuning. Sebas

topol, CA: O'Reilly & Associates Inc, 1993.
Date, C. J. An Introduction to Database Systems. vol. I 5th ed. Read

ing, MA: Addison-Wesley, 1990.
Elmasri, Ramez and Sharnkant B. Navathe. Fundamentals of Database

Systems. 2nd ed. New York: Benjamin/Cummings, 1994.
Korth, Henry F. Database System Concepts. New York: McGraw Hill,

1986.
Lewkowicz, John. The Complete MUMPS. New York: Prentice Hall,

1989.
ORACLE Developer's Release Documentation. Version 7.0. Red

wood City, CA: May 1992.
VA FileMan Developer's Release Documentation. Version 20.0. San

Francisco: Information Systems Center, July 1993.
Walters, Richard. "Database Optimization: An Overview." MUMPS

Computing 22 no.4: 52-59.
Winn, Tami K. and Maureen L. Hoye. Relational Features of VA

FileMan.

Call for Articles
Here at MTA we are always looking for information that is
interesting and useful to our members. If you have developed
a useful M application; found a better or Yriore cost effective
way to do something in M; reduced overhead or boosted
productivity; or simply have a useful M tip, we'd like to hear
from you.

Simply submit an abstract describing your idea to:

Managing Editor
MComputing
1738 Elton Rd.
Suite 205
Silver Spring, MD 20903-1725

All abstracts and subsequent papers will be reviewed and
judged appropriate for publication based on content, original
ity, accuracy, and usefulness to the M community.

If you are chosen for publication, you will be notified by
MTA.

Don't miss your chance. Contribute to M Computing.
Submit your ideas today! -- the Editor

September/October 1995

