
NEW
TECHNOLOGIES

How OOP Relates to MW API

by Rodney Anderson

The M Win. <lowing Application Programming Interface
(MW API) is a welcome advance in the M community
and makes a significant contribution to M's impact on

the computer world. The M community has been waiting for
a good user input-output interface standard. The object­
oriented paradigm (OOP) has been talked about for a long
time, and recently the understanding of OOP has increased
dramatically. This article explores the relationship between
OOP and MW API, and is the second article in the series on
OOP and M Technology.

The MW API is a standard the MUMPS Development Com­
mittee (MDC) derived. It is a consistent approach to pro­
gramming graphical user interfaces (GUls) on many different
platforms. The MW API enables standard M code to be truly
portable across many different platforms.

The OOP applies to object-oriented (00) languages, such as
Smalltalk and C+ +, and allows application development to
be designed and implemented using objects. Have we ever
considered that the MW API and the OOP might be related
or that the MW API could incorporate many 00 features? If
they are related, then an 00 approach to programming the
MW API can be used to full advantage. Development with
MW API would be easier, faster, and simpler.

Why Use Windows?
Anyone who has used a computer for some time cannot fail
to have noticed the worrying trend in the physical size of soft­
ware packages. In the first few years of the IBM PC, an appli­
cation program, such as a word-processing or spreadsheet
program, would typically fit on a single 360K diskette. One
diskette contained all that was needed to run the program,
save data, and output on the screen or printer. Programs could
even be run from floppy disk (and frequently were). Docu­
mentation appeared in a single, brief manual. Programs were
only difficult to use when badly programmed.

Since those halcyon days, software packages have expanded
at an alarming rate. It is now not uncommon for even the
most basic of applications to be packaged on ten or twenty
1. 44 mb disks. We all realize that hardware is getting smaller

48 M COMPUTING

and cheaper, however, software appears to be getting larger
and bulkier, especially the software tools to develop systems.
There have been great leaps in the facilities provided by the
programs, of course, and we are all capable of producing re­
sults that ten years ago were unimaginable. Even so, software
producers have become so keen to outpace their rivals that
most of us never use most of the features we buy in these
packages.

Much of the increase in application size arises from hardware
diversity; each new piece of hardware needs special instruc­
tions for the software using it. To install a new printer, as an
example, the program must know the codes needed to change
fonts, spacing or type style; for any display, the program must
know the number of pixels on the screen and the colors avail­
able. The driver stores these special instructions. A driver is
a special file supplied for each device. Therefore, the many
extra disks that come with software packages are drivers for
dozens (sometimes hundreds) of different hardware devices.

This is where Windows should come to the rescue. Windows
takes over all communication between the application pro­
gram and the hardware-the printers, screen, and serial
port~. ~indows.includes drivers for all ~se devices and the
application programmer can concentrate on producing code
to solve a problem.

Windows gives the user a standard interface that is neat and
consistent, and decreases learning time on new applications;
a standard interface to the hardware, whi.ch allows one to use
many platforms and reduces application size; and a standard
programming environment that frees the programmer to con­
centrate on problem-solving.

The Main Components of M
Windowing API
The MW API is the M Technology standard interface to GUis.
This means that the programmer can write standard code,
knowing that the final code will execute on many different M
vendor platforms. (There are many previous M Computing
articles that can serve as background on MW API; this article
only summarizes the MW API standard for discussion pur­
poses.)

Windows are rectangular areas on the screen that the user
sees as objects and interacts with directly by touching the

June 1995

window or by using the keyboard or mouse. The user interac­
tions are reflected in changes to the graphical areas on the
screen surface.

"$w is a structured system variable name (ssvn) used within
MWAPI to allow access and control of windows. This win­
dow ssvn is called "$W and has the structure "$W (Window

Name) . It holds the attributes for the window objects in
the structure "$W (WindowName,Attribute) - Attribute

Value.

Elements, including gadgets and menus, are also image areas
on the screen with which the user interacts. The "$w ssvn also
is used within the MW API to allow access to and control of
elements. "$w also holds the attributes for the elements and
has the following structures

A$W(WindowName,G,GadgetName)
A$W(WindowName,G,GadgetName,Attribute)=AttributeValue
A$W(WindowName,M,MenuName)
A$W(WindowName,M,MenuName,Attribute)=AttributeValue
A$W(WindowName,.'.l;_,TimerName)
A$W(WindowName,T,TimerName,Attribute)=AttributeValue.

"$DI is an ssvn that stores information about the window en­
vironment. Most of the attributes of the display are read-only
attributes. Some of the attributes are defaulted from the Win­
dow platform that is running.

The interaction between the user display and the application
takes place through events. The user interacts with the gad­
gets and menus on the screen using the keyboard or mouse,
e.g., pushing a button, scrolling a scroll bar, or selecting a
menu option. This can result in an EVENT. An EVENT exe­
cutes a DO call to a predefined label in a subroutine.

Timer elements also operate in an event-oriented manner,
however, time events are not initiated by any interaction with
the user.

When an event is being executed through the DO subroutine
call, all event-environment information is available in the
event ssvn called "$E.

Since the MW API provides a standard program interface to
the programmer, it has the advantages of being a simple and
easy interface (since the ssvn layout is intuitive to an M pro­
grammer), and where implemented, it provides a standard
interface across windowing platforms.

Basic OOP Concepts
Here is a brief summary of the concepts underlying the 00
paradigm.

Each display element, data structure, or other entity in an
application is an object. Objects are categorized as Classes
or Instances.

June 1995

M-I!_act ~,, '-:..
;' '

You only get one chance to make a
first impression

,LI Contract MUMPS solutions for all your needs.
Experience in a wide variety of applications:

• Clinical & Reference Laboratory
• Anatomic Pathology / Cytology
• Physician Office & Practice Management
• Nursing Home and Dialysis Solutions
• Automated Instrumentation
• Accounts Receivable / Payable
• Inventory Control
• Barcode Solutions

4 Value Added Resaler for technology solutions
including: Scanners from PSC and Symbol,
Barcode printers from Zebra and Fargo.

Technology partners with RTS. Inc. (the
industries leader for remote printers and
telecommunications needs).

Solutions are only a phone call away:
Call us at: (615) 834-7666 / (615) 832-4100 FAX

.M::flli is a MUMPS programming division of:
Common Cents Systems

Software Engineers

HSII, a fast-growing health-care software com­
pany in Minneapolis, is looking for Software
Engineers, at all levels, for the design and devel­
opment of systems using HSil's MUMPS code­
generator. Minimum two years programming
experience along with design and communica­
tions skills. Desired experience in one or more
of the following applications: Provider Manage­
ment, Membership, Premium Billing, Claims,
Capitation, AP, GL, Patient Accounting and
Patient Scheduling.

Send resume and salary requirements to:

Human Resources Assistant
Health Systems Integration, Inc.
8009 34th Avenue So., Suite 700

Bloomington, MN 55425

IA COMPUTING 49

Composition: An application consists of many separate, in­
dependent objects. In some cases, one object (class) contains
another. This is called composition and should not be con­
fused with inheritance (see below). The first object is not de­
rived from the second (which is a parent/child relationship);
instead the first object is composed of data and the second
object. These container classes are referred to as composite
classes or aggregate classes.

An object encapsulates all the methods (procedures and func­
tions) and data needed for it to operate correctly at run time.
The data are usually accessible only through the public meth­
ods of the class. The value of the object's variables deter­
mines its state.

The behavior of an object is determined by its class. A class
is a template for objects, each new object being an instance
of a class.

New classes are derived from base classes. Each driver class
can be the base class for other classes, which results in a class
hierarchy.

A class inherits the methods of its base class (and all classes
above it in the hierarchy). A class can add new methods or
override those of the base class by redefining them.

Objects from different classes may have methods with the
same names, but these methods may respond in different
ways. This is polymorphism. Two or more classes that are
derived from the same base class are said to be polymorphic.
The word polymorphism means, literally, many forms, and
in 00 means that two objects may share many characteristics
but also retain unique features.

Similarities and Differences
Many similarities exist between MW API and the 00 para­
digm. The first similarity is a physical one, in that the user
sees the windows as objects since they are rectangular areas
on the screen. The user interacts directly with these objects
by touching the object, e.g., pushing a button or scrolling
a scroll bar. A window object receives this user interaction
through the keyboard or mouse, and changes made by this
interaction result in changes to the graphical output on the
screen.

The next intangible and conceptual similarity between win­
dows and 00 is the 00 concept that "an object can contain
other objects" or can be composed of other objects. Compar­
ing this to the windowing standard, we see that an MW API
window may contain gadgets and/or menus and/or timers.
Therefore, the MW API window is an object of type window
that contains other objects of type element.

50 Al COMPUTING

An example of how we can think of objects within the
MW API is to identify objects using the ssvn identity. For
example, /\$W("fred") might be the identifier for a window
object called "fred." If we asked this object for the value of
its "TITLE" property then we could expect a value. Similarly,
/\$W("fred", "G", "gadgetl") might be the identifier of an­
other object. If we asked this object for its "POS" property
then we could also expect a valid answer. Messaging to these
objects could be achieved with a simple extrinsic function
such as

>SET x=$$AMESSAGE(A$W("fred"), "GetProperty"
"property=TITLE")

One main 00 concept is that "objects may have attributes or
properties that describe the object." Of course, objects may
have properties (or attributes) different from other objects
and the values may be unique. This concept equates to an
MWAPI object (window or element) that has its own private
properties, e.g.' TITLE' POS' SIZE.

One difference between MW API and 00 is encapsulation.
In 00, an object is a combination of code and data. The code
is the method by which the object allows access to its data.
In MW API, a window is an object and the callback code is the
window procedure. The window attributes are the MW API
window objects' data. In 00, the object encapsulates the
code and the data. This isolates the data, only allowing access
through the predefined methods/code. Encapsulation in the
MW API environment is not enforced beca,yse the program­
mer can access the attributes or data of the window objects
at any time without limit. Encapsulation in MWAPI can be
enforced only by all programmers agreeing to a convention.
This convention follows the 00 world standard and would
indicate that a message must be sent to obtain the value of an
attribute of an object.

As mentioned, the user sees windows as objects and interacts
directly with them by pushing a button or scrolling a scroll
bar. These interactions are Events that send messages to ob­
jects. In MWAPI, events can be defined for actions of an
object. For example, a button selection causes a SELECT
event, or an UNFOCUS event occurs when a gadget loses
focus. Menus and Timers also operate in an event-oriented
manner. A user can choose a menu option to cause a SELECT
event; timers have TIMER events.

Objects interact with each other by sending messages. An ob­
ject responds to a message by finding the code corresponding
to the message, taking the parameters of the message, and
executing the code as a function. Windows also use messages
to communicate with other windows or applications. This
means that windows can call a function within the program.

June 1995

This function and the parameters to this function are described
by the particular message. In MW API, a message is usually
initiated by a user event. It includes the event name and sub­
routine label reference defined for that event. When the event
is generated, a DO command executes the subroutine label.

In 00, the code that is executed when an object receives a
message is referred to as a method. A method is written in
the language of the 00 program. In MW API, methods are
equivalent to the event callbacks that are executed when an
MWAPI event occurs. Just like 00, which keeps a list of
these methods, a list of MW API event/methods with associ­
ated M code and subroutine labels is maintained by the pro­
grammer. These methods can refer back to the screen or the
database via object names. Very often the messages from the
window inform the object of user input. For example, a push­
button window object that is being pressed is an event and
sends a message as a DO label routine.

Inheritance is an extremely powerful concept of OOP. As the
name suggests, ariribject may inherit the properties of another
object-its parent. Just as a child may inherit characteristics
from his father, so an instance can inherit properties from its
parent. Similarly, in MW API, a window object may inherit
attributes from its parent window or from the /\$DI ssvn. For
example, BCOLOR of a gadget can be inherited from the
window containing the gadget. Or the COLOR of a window
may be inherited from the /\$DI ssvn. The inheritance occurs
only if the attribute is not defined in the original window
object.

The analogy between 00 and MW API, however, is only
strong where properties can be inherited from parents. The
key to inheritance' in 00 is that only one copy of an 00
method exists, and the system locates it by searching the in­
heritance tree. In the MWAPI environment, however, there
are multiple copies of MW API data structures (one for each
window and its gadgets) plus multiple copies of methods
(event callbacks) and therefore no inheritance tree search oc­
curs to locate the methods.

Every method in the MW API needs to be separately main­
tained. 00 allows one copy of the method to exist up until
run time, so that program maintenance is simpler. Therefore,
the idea that 00 programming might help maintenance is
worth pursuing.

Summary
The 00 paradigm is related to the MW APL Both the 00
paradigm and the MW API incorporate and display composi­
tion, state, encapsulation, events, messages, methods, and
inheritance.

June 1995

The answer to al
M computing ne

Since MW API incorporates many 00 features, using 00
could be a fine approach to programming the MW APL The
next article in this series will show examples of how OOP
can be used practically to program the visual presentation
layers of MW API, Visual Basic, and CHUI. M

Rodney Anderson has worked with M since 1980 and has been deeply
involved in graphical user interfaces, and developing MW API 00
tools. Write him at P.O. Box 1633, Macquarie Centre, NSW 2113,
Australia, or fax him at 61-2-364-8379.

Atlas Development Corporation

Atlas Development is the leading software development and consult­
ing firm applying M-based relational database/SQL solutions. Due
to recent growth, our company has immediate openings in Sales/
Marketing. A new product launch with a national sales territory will
offer exceptional income potential.

Candidates must have a BA/BS degree, experience with
M Technology, and an entrepreneurial attitude. Any software back­
ground in a healthcare (medical or laboratory) setting is a plus.
Sales/marketing experience is helpful, but not required. Please
forward your resume and salary history to Atlas Development
Corporation, 23161 Ventura Blvd., Suite 200, Woodland Hills, CA
91364, or fax to (818) 225-0611. EOE.

M COMPUTING 51

