
I
I
I
l
I
i

1

J
1
t
' i.

l
"'

I

JUST
ASK!

How to Handle the DO Cotntnand
in the Age of $TEST

Question: Why doesn't the DO com
mand save and restore the caller's
value of $TEST, as do extrinsic func
tions and the argumentless DO?

Answer: It's a matter of timing. The
DO command came first. When M and
its contemporaries (BASIC, LISP,
FOCAL, and othe~) were invented,
the subroutine concept, borrowed
from assembler languages of the day,
was simply to avoid repeated code.
Variables were not scoped, that is, the
calling and the called code "saw" the
same set of variables. Likewise, sta
tus flags were universally available;
MUMPS subroutines often returned
their results in $TEST, and sometimes
in the naked indicator!

This paradigm permitted compact,
speedy interpreters and small but
unintelligible application routines.
MUMPS programmers of the 197Os
performed marvelous feats with 8-
Kbyte interpreters, 1-Kbyte routines,
and 1-Kbyte for local variables.

By the early 198Os, language design
ers recognized the value of closed
subroutines and functions. Segments
of code could be reusable and robust
if they had no effect on the program
but the intended effect. BASIC' s
GOSUB ... RETURN and MUMPS'
oo ... QUIT acquired actual and formal
arguments (FORTRAN had them a
decade earlier). The NEW command
limited the scope of local variables to

June 1995

by Frederick L. Hiltz, Stage Manager

the subroutine that used them. Extrin
sic functions returned a value, elimi
nating that use of $TEST.

Most important, programs composed
of closed subroutines and functions
can be intelligible. Why aren't they?
That, as the professor said, is beyond
the scope of this discussion, but a
worthy topic in its own right.

The MUMPS Development Commit
tee (MDC), designers of our lan
guage, faced a hard choice. Should
the members change the DO command
to save and restore $TEST, breaking
tens of thousands of MUMPS rou
tines, or should they apply the new
paradigm-only to new language fea
tures, making them inconsistent with
DO? As we know, they chose the lat
ter, and to this day you can start a
good argumeNt at any MTA Annual
Meeting about it.

We can't have it both ways, but the
MDC is considering several propos
als to improve the situation. They fall
into three categories:

• Substitutes for $TEST-A system
variable that works more or less like
$TEST, but is saved and restored by
all forms of DO and extrinsic func
tions, would be used in new code.

• NEW $TEST-Let the NEW command
apply to $TEST as it does to local
variables. Subroutines would use it
before changing $TEST. Calling

routines could not rely on it unless
the programmer examines the sub
routine.

• Scoping for $TEST-New syntax
brackets the range of code affected
by an IF statement. One example
adopts the IF ... ELSE ... END IF con
struction found in other languages.
Nesting is permitted: IF saves $TEST
before changing it. ELSE is optional.
ENDIF restores $TEST saved by the
matching IF.

None of these is perfect, and the best
way to handle the effect on $TEST of
OPEN, READ, and LOCK is still not
settled.

What do you think? Send your rea
sons to the Stage Manager c/o the
managing editor at M Computing. M

Frederick L. Hiltz, Ph.D., develops medi
cal information system software at Brigham
and Women's Hospital, Boston, Massachu
setts.

M COMPUTING 19

