
$%SQRTAMATH than there would be for
SET X=$$SQRTAMY0WN, and the library
function will typically be more accu­
rate than a function written in
M[UMPS] would be.

Now, in M[UMPS] we could always
abbreviate everything to its first letter;
can we still do that with those new li­
brary functions? No, it wasn't possi­
ble to define the library functions in
an unambiguous way and retain this
option. Both the name of the function
and the name of the library will have
to be spelled fully.

A first at this MDC meeting was a set
of responses by the Interpretations
Task Group. This group was created
to answer questions about the stan­
dard. The notatlon and language in
the standard have evolved to the point
where certain parts are no longer easy
to understand for everyone. If ever
you don't understand what is intended
in the standard: "Just Ask!" The Inter­
pretations group is here to answer.

The questions this time are:

• In counting the number of charac­
ters in the name of a global variable,
do you include the leading A sign?
No, that character doesn't count to­
ward the maximum number that is
portable.

• For values between 1 and + 1,
should the two-parameter form of
$FNUMBER produce a leading zero,
just as it does for the three-para­
meter form? No, that zero only ap­
pears when the third parameter is
specified.

• What is the sign of O (zero)? Is zero
negative or positive? Zero does not
have a sign. It is neither positive nor
negative.

• How is the naked indicator affected in
the context of SET $EXTRACT (Ao
(4, AA(1)), 1, AB(2)) =AC(3)? The
references that affect the naked indi­
cator are, in sequence: AA(1), AB(2),
Ac (3) and Ao (4, a l , unless the value
of AB (2) is less than 1, in which case
the reference to Ao never occurs.

• And, finally, what is the meaning
of the term standard in the defini­
tion of library functions? The term
standard was introduced to sim­
plify (sic!) the description of the
values that a function can return. It
means that the possible values are
all that are typical for the data inter­
pretation (tangent would return a
standard value, sine is limited: -1
:s value :s + 1). M

If you have questions in need of answers,
forward them to the managing editor of M
Comp1,1ting. They will be handled by the
Interpretations Task Group or in this maga­
zine.-Editor

Ed de Moel is the new chair of the MUMPS
Development Committee. He is with SAIC
and works on the tools for performance
monitoring. His e-mail address is
demoel@fwva.saic.com.

FOCUS ON
FILEMAN

FileMan Version 21: DBS
Record Selection and Criteria

I
n Part 1 of this series we explored
the conventions of File Manager's
new API (application program­

ming interface), the database server or
DBS, designed to make effective use
of the language features of the 1990 M
standard, and to begin using the 1995
standard. Taken as a whole, the new
conventions described in that arti­
cle-parameter passing, file num­
bers, passing closed array names by

April 1995

by Rick Marshall

value, IENS (Internal Entry Number
String) values, standard arrays and
flags, the Language and Dialog files,
and the FDA (Filer Data Array) struc­
ture-help form a new method of
communication between FileMan and
applications. This new system of com­
municating opens the door to multilin­
gual applications, graphical user1n­
terface, non-M environments, other
new user interfaces, and even other

new APis, any of which can use the
DBS calls to access FileMan data­
bases. We continue now with our sur­
vey of the DBS by exploring when and
how to use the calls it provides, in this
Part 2: Record Selection and Criteria.

Accessing the
Data Dictionary
In the past, the user interface has mo­
nopolized the examination. and ma-

• COMPUTING 41

nipulation of data dictionaries (ODs),
through options such as List File At­
tributes. Writing code capable of
making reliable decisions based on
what it finds has been difficult and
risky. The DBS begins to address this
reliability problem with a set of four
calls in version 21. Version 21 barely
begins to open this doorway to the
data dictionary, with many versions
ahead needed to complete the pro­
cess. Your input will help us prioritize
the features you most need to access,
but all the future work will build from
the foundation laid here in version 21.

The DBS's DD retrieval calls come in
two pairs of calls: one oriented toward
returning information about whole
files, and the other about specific fields.
In each pair, one call actually gets the
information for the caller, and the other
returns a list of pieces of information the
first call can get for you. The four calls
are FIELD/\DID and FIELDLST/\DID, and
FILE/\DID and FILELST/\DID, all of
which as DBS calls accept parameters
(as briefly described in the previous ar­
ticle in this series; please see the No­
vember 1994 issue).

Programmers usually do not need to
inspect the ODs in their applications,
but when necessary, they have re­
sorted to integration agreements with
the FileMan team to ensure that their
direct access did not cause problems
later when the team changed the ODs
underneath them. The four new calls
give developers a much-needed level
of abstraction for handling special sit­
uations, protecting them better than
integration agreements have done.

Finding Records
The developer's first major challenge
is selecting the record to display in the
application's main window. While
the classic FileMan API includes sev­
eral record-selection calls, each of
them will issue WRITE commands in

42 Al COMPUTING

some situations. It is especially diffi­
cult to control the various program­
ming hooks that contain embedded
READ and WRITE commands: Poor con­
trol can result in the classic API prop­
erly returning part of the information,
with another part of it trailing off to
never-never land instead of leading
back to the application's window.

The Finder call, FIND/\DIC, solves much
of the problem. As with all DBS calls,
it passes back all information through
standardized arrays that the application
can manipulate into a nice window dis­
play. The developer can select nearly
any window gadget in order for the user
to pick a record, interpret the results of
the selection to produce a text value,
and pass the result to the Finder for the
actual database lookup. Of all the DBS
calls, the Finder solves the widest num­
ber of record-selection problems for
our would-be GUI-application devel­
oper. The DBS even has an extrinsic
function version of the Finder,
$$FIND1 Aoic, to handle unambiguous
lookups.

Listing Sets of Records
One class of window gadgets presents
difficulties for the Finder-listing gad­
gets. Fortheusertochoosefromamong
list boxes, list/entry boxes, and drop
boxes, the developer must show the user
the available choices in advance. The
Finder cannot initially populate these
gadgets because it needs a starting value
from which to work. Therefore, a dif­
ferent tool, the Lister, supports these
kinds of gadgets.

The Lister runs on any regular (or
what looks to be regular) FileMan in­
dex, and will return part or all of the
list of records cross-referenced in that
index. The list can be generated in
forward or backward order, restricted
to unique starting and ending values
or to a partial match with a value, and
even resumed where it was inter-

rupted from a previous Lister call. So,
the listing gadget will show what the
user needs to see. Between the Lister
and Finder, the programmer has the
necessary tools to attach a live File­
Man database to a window used to se­
lect records.

Space-Bar Recall
Another specialized call completes
the record-selection tool kit. FileMan
users take advantage of a specialized
user-interface feature called space­
bar recall. At any record-selection
prompt, the user taps the space bar,
rather than typing an actual value;
FileMan interprets this as "Pick the
same record I picked the last time."
This valuable feature saves users
many keystrokes, and the Finder
properly handles the space character
as an input value.

The Finder, however, cannot save se­
lected values for later retrieval using
space-bar recall because it cannot
know if the programmer calls it with a
user-entered value or with some other

'.\-
value. Because only user-entered val-
ues should be saved for subsequent
space-bar retrieval, the programmer
should call RECALL /\DILFD to make
FileMan remember which records the
user selects. The programmer should
call RECALLADILFD as soon as the user
picks a record, probably as part of the
callback associated with the selection
gadget, to keep the valuable space-bar
recall feature as the application mi­
grates to a GUI platform.

The Tools to Create
New Records
Sometimes the user does not want to
work with an existing record, but in­
stead wants to create a new one. The
DBS supplies a GUI-compatible call
to do just that: the Updater.

April 1995

The programmer tells the Updater in
which file to create the new record, and
may pick the record number to use. Be­
cause some files lack a single, unique
field capable of identifying individual
records, the Updaterneeds to be fed the
information for all the new record's Re­
quired Identifiers; if the programmer
calls the Updater without supplying it
with these field values, it will reject the
call. If during application development
the programmer forgets which fields a
file requires, FILE;\DID will supply the
information. This feature demonstrates
some of the synergy between the vari­
ous DBS calls.

Therefore, GUI applications need to
prompt the user for all required identi­
fier fields before calling the Updater.
The DBS supplies the Data Checker
call, CHK;\DIE, to check the values for
fields in a record that does not yet exist,
as the programmer needs to do when
creating new records. This call cannot
provide the sophisticated checking pos­
sible when a record exists, but it en­
sures a match between the basic syntax
of each field and the user's entry for the
fields in the window.

The Steps to Create
New Records
To use the Updater and Data Checker
together for GUI-based record cre­
ation, then, follow these basic steps.

1. As a programmer, you need to pre­
sent the user with gadgets to set any re­
quired identifier fields whenever the
user starts to add a new record.

2. The callback for each field should
pass the user's value through the Data
Checker, handle bad input appropri­
ately, and load valid data into a Filer
Data Array, or FDA, node. (See the pre­
vious article in this series or the FileMan
documentation for more information on
how to do this.)

44 M COMPUTING

3. Only after the user has entered valid
values for all the new record's required
identifiers should you pass the FDA
you've built to the Updater, which will
then add your new record and pass you
back the record number.

4. Armed with this record number you
can then proceed with any additional
data entry you wish for this record.

Things to Remember
about New Records
Remember these important details
about the Updater. First, although it
can file data for more fields than just
the required identifiers, it is not as ef­
fective as the Filer, the best tool for
editing. The Updater's data-valida­
tion abilities are not as strong as those
of the Filer: Use the Filer for every­
thing beyond the required identifiers.

Second, the Updater can handle more
than one record at a time, but it does
not do so efficiently. Version 21 be­
haves perfectly with individual re­
cords, but FileMan 22 probably will
include a Batch Updater optimized for
creating many new records at a time.

Third, the Updater has limited, built-in
lookup capabilities. FileMan's classic
API supported record creation through
a feature known as "Learn As You Go,"
or LA YOO, in which the record-selec­
tion calls automatically would add a
new record with the user's permission
if FileMan could not find a match with
the user-entered value in the file.

The Updater has a limited version of
this popular feature, which the devel­
oper can ask to create a new record
only if it can't find an existing one to
match. The Updater's LA YGO fea­
tures use a limited subset of File­
Man's lookup capabilities to perform
the matching, and can handle simple
situations in one call. Sophisticated

LA YGOs require the programmer to
make separate DBS calls, first to the
Finder, and then to the Updater if it
cannot find a match. Future versions
of the DBS will incorporate such
LA YGO features in a single call.

Retrieving and
Editing Records
Part 3 of this series will explain how
to use the DBS to get data from re­
cords for the user, to help in filling in
those fields, to validate what the user
enters, and eventually to file the up­
dated record back into the database.
The DBS for FileMan version 21 sup­
ports the basic tasks to create a GUI
entry-and-editing application built
around a FileMan database. As devel­
opers of FileMan-based applications
around the world continue migrating
to GUI and client-server software, the
DBS will evolve to solve the next gen­
eration of problems. Eventually, the
DBS will provide a complete API to
the FileMan database, which lets pro­
grammers put their own interfaces
onto this powerfill database manage­
ment system. M

Forward your FileMan questions or topics
you would like to see addressed in this col­
umn to G.FILEMAN DEVELOPMENT
TEAM@FORUM.VA.GOV, or write to
V AISC6-San Francisco, Suite 600, 301
Howard Street, San Francisco, CA, 94105.

Rick Marshall works at the Seattle office of
VA's San Francisco Information Systems
Center. He writes and programs for the File­
Man development team, teaches the Kernel
class at Mr A's annual meeting, and works in
MDC as the editor of the 2001 M Standard.

April 1995

