
COMMENTARY

Evolving M in Object Technology

Recently, there has been a rising
tide of awareness and discus
sion about object-orientation

(00) and its place in the M commu
nity. We certainly are pushing along
this awareness not just as part of the
work we are involved in, but in a be
lief that the object-oriented (00) par
adigm is a necessary evolutionary
step for any technology, whether it is
M or COBOL or C. Articles are ap
pearing about 00 technology ex
plaining what it is and what it does.
There are many books and classes that
teach about 00 concepts. Here, we
would like to explore a fundamental
question for M, based on the premise
that M will be shifting toward the use
of the 00 paradigm. This shift is in
evitable because the science of soft
ware engineering is evolving in that

. direction and has been for many
years. Basic business needs and re
quirements compel us to move in that
direction. Beyond that point, how
ever, we must look at the role M
should play to take advantage of the
power of 00. This is where uniform
agreement may not come so quickly.
Specifically, we need to ask whether
M should become an object-using
language or an object-de.fining lan
guage. This distinction, which will be
explained, is a significant one since
we use it to raise some important
questions and challenges that M faces
based on how we answer that ques
tion. In essence we are asking "Do we
want M to be a 'mainstream technol
ogy' a la C+ + and others?" We must
come to grips with this question and
be ready to accept the consequences
that our response will force upon us.

26 M COMPUTING

by Jerry Goodnough and John McManamon

Object Usage
When discussing object-oriented lan
guages, a crucial distinction is
whether the language uses objects or
has the additional capability to de.fine
objects. An object-using language is
one that has functionality to connect
to and communicate with other ob
jects. This type of language is along
the lines of a component-based lan
guage (such as Visual Basic) that pro
vides us with a set of objects we can
create, use, and destroy at run time.
These objects may include presenta
tion layer components such as con
trols and containers, or they may be
worker objects that provide a service.
Examples of these types of objects in
clude collection objects, or sorting
objects that accept data and sort it on
some primary key.

This does not assume that just because
we can talk with (use) an object, that
the object can talk with (use) us. Fun
damental questions to ask in the case
of object-usage are what role should
M play in communications with ex
ternal objects and how is this role real
ized. Is M seen from the outside
world? And if so, is M seen as just one
large object, or can we achieve finer
granularity?

Since an object-using language, by
definition, only uses objects and does
not define them, there is no modeling
of the data "as objects" within the lan
guage environment. The system data
and functionality not provided by the
components will follow the tradi-

tional paradigm of data and proce
dures as distinct entities, with all the
traditional problems those entail.

Object Defining
An object-defining language is one
that not only communicates with
other objects, but has the additional
capability to define new types of ob
jects. There are alternative technolo
gies to provide this definition. Tradi
tionally, object-oriented languages
have used Class structures to manage
the complexity of object modeling.
These structures provide a basis for
reusing fundamental portions of the
model through inheritance and sub
classing among others. With the
power to define new objects, we can
create systems that reflect the actual
business model diNctly. The ability
to model the business directly, lever
age existing knowledge, and code
through reuse are formidable argu
ments for pursuing object-definition.

The impact of the object-usage versus
the object-defining approach is
greatly felt in fundamental systems
analysis and design. Working with
object-usage, designers develop an
architecture using components that
other people have produced and will
try to fit those components into the
system as best they can. But the es
sential business model, which is
unique to the environment, is not af
fected in any significant way. The de
signer is left with external compo
nents fulfilling certain roles and core
system components remaining as tra
ditional, partitioned code and data.

continued on page 28

April 1995

When using an object-de.fining lan
guage, the designer can use other
components, but truly can build the
core business model into the design
because of the ability to define new
objects. Thus the system imple
mented from this design more fully
expresses the business model and
adapts well to changes and modifica
tions over time. The objects pur
chased or produced can include large
composite framework objects as well
as small component objects.

Making M an Object
Using Language
Being an object-user has certain ad
vantages. The more objects we can
communicate with, the better. We
may be able to make use of many ob
ject features and open ourselves to the
outside world. In terms of using and
realizing the other advantages of ob
ject-orientation, however, we haven't
gone very far. Our data are still sepa
rate and are not encapsulated. Data
and functional relationships are hard
wired into the system with all the cor
responding dependency nightmares.
Our code is not any more reusable
than traditional M code. Our systems
then simply become traditional pro
gramming platforms with the addi
tional functionality to use externally
defined objects.

Some may argue that this is not all that
bad. It may be that object-usage is a
proper role for M to play. It allows M
to take advantage of component
based software without laying the
burden of the 00 paradigm on the
backs of implementers and designers
(not to mention the MUMPS Devel
opment Committee). This may be a
reasonable alternative, but to make
this decision, we must have a clear de
lineation of the strategic advantages
and business reasons for doing so.
The case must be convincing as to the
benefits for M in evolving in that di-

28 M COMPUTING

rection. We also must understand the
risks entailed in limiting M to the role
of an object-using environment. Are
these risks outweighed by the ben
efits?

If users are to rely solely on object
usage via external interfaces, we ar
gue that M may fall into the same fun
damental problems encountered with
the M Windowing Application Inter
face (MW API). While it is an ex
tremely elegant solution, in the M tra
dition, by supplying simple hooks to
external and high-level interfaces in
the Windows environment, the
MW API stops short of allowing ac
cess to the lower-level, internal func
tionality. This capability would have
made the MW API more than just ele
gant: It would have made it truly use
ful in the sense of establishing a fully
capable environment for Windows
development.

In becoming an object-using lan
guage we risk the same fate. Users
will have useful hooks to the higher
level functionality exposed by the ob
jects they want to use, but the myriad
aspects of functionality that are not
exposed (yet critical to their being
able to fully use them) will be out of
reach. Therefore, we argue that both
levels need to be addressed: the
higher-level abstractions as well as
the low-level interfaces that are not
exposed.

We must further ask, "If Mis going
to be an object-using language, is M
then a reasonable environment for ob
ject users?" If we want our technology
to grow and be widely accepted, we
must not only decide what role we
play, but what our world will look like
after we have committed to that vi
sion. Will those who are interested in
searching out new and efficient tech
nologies be enticed to go with M
Technology? Or are there other alter
natives that provide a better object
user development environment? If we

cannot demonstrate that ours is the
better technology, then we will be rel
egated to no better role than that of a
data repository with the technology
experiencing limited or stagnating
growth potential.

If we are going to limit the role of ob
ject-orientation in M to simple-com
ponent usage, we had best be pre
pared to live in that world and take
steps to improve our position as an ob
ject-using environment with respect
to other technologies.

Making M an Object
Defining Language
On the other hand, if we decide that
M's leverage needs to couple power
ful database capabilities with the full
potential of the 00 paradigm, we
must likewise look at what that vision
entails. While we believe this is the
path M must take, we don't hesitate
to say that it won't be without some
cost. If we are going to incorporate
the power of the paradigm in the lan
guage, then we must invest in the
training, tools, an'a knowledge that
the paradigm requires. If we will have
the power to model our systems, we
must have the knowledge to use that
power wisely. This means opening up
the traditional M programmer's view
of the world to include an understand
ing of the object-oriented framework
and apply it to the problem at hand.
This includes not just learning con
cepts, but understanding object mod
eling and design tools, among other
topics. It must be noted, however,
that though an object-defining lan
guage extends the level of complexity
in systems, it allows a multitiered ap
proach to solving the issues of that
complexity. Work can be leveraged
across the organization by specializ
ing expertise within certain areas, for
example class builders and applica
tion developers. An organization may
take advantage of work done by other

April 1995

M-72.act ~,~ ,, '
M/MUMPS Professionals & Employers

You only get one chance to make a CPU has exclusively and successfully
specialized in the placement ofM/MUMPS
programmers / project leaders / managers
at all levels - for over 4 years -Nationwide.

first impression

,LI
Contract MUMPS solutions for all your needs.
Experience in a wide variety of applications:

• Clinical & Reference Laboratory Our services include:
• Anatomic Pathology / Cytology
• Physician Office & Practice Management • Consultants
• Nursing Home and Dialysis Solutions
• Automated Instrumentation • Permanent Employees
• Accounts Receivable / Payable
• Inventory Control • Temporary Staffing
• Barcode Solutions • Excellent Client Companies

,LI
• Screened, Qualified Candidates

Value Added Resaler for technology solutions • Outstanding Opportunities
including:

• Scanners from PSC and Symbol
• Barcode printers from Zebra and Fargo
• Remote teleprinters from RTS

• Consistent Service

CAREER PROFESSIONALS UNLIMITED
6304 FRIARS ROAD • SUITE #337 I Solu\ions are only a phone call away:

Call us at: (615) 834-7666 / (615) 832-4100 FAX I SAN DIEGO, CA 92108

Because of our work and
experience in this area,
using the reasons cited

above, we hope to provide
a compelling argument for
adopting an object-defin-
ing language instead of

merely object-usage.

organizations as well as inhouse de
velopment that can be reused and ex
tended. The organization does not
have to invest in soup-to-nuts training
for every employee and thus should
not be intimidated by the complexity
that object-defining brings to the
table.

Besides investing in the necessary
brain-power, we must also look at
what M must do in order to become a
player in this arena. If people are
looking for an OO-development Ian-

April 1995

guage, why should they choose M
over another language? In order to
meet this challenge, M must be able
to participate in the outside world in
a client-server environment. Can M
participate with the outside world as
an equal, or must it have control?
What support is needed from M to
support its role as a client? As a
server? Dynamic Link Library link
age and communicating data with dif
ferent data types are likewise key is
sues to be resolved.

Conclusion
There are many concerns involved
that will not be easy to solve. But if
we do not offer the necessary services
to open the M environment to the
world at large, we risk the real possi
bility of M becoming less and less
useful to people. We need to look at
these concerns now, as we start down
the road to object-orientation and the
future of M, and decide on our vision.

PHONE: (800) 600-3506
FAX: (619) 497-1705

Because of our work and experience
in this area, using the reasons cited
above, we hope to provide a compel
ling argument for adopting an object
defining language instead of merely
object-usage.

Whether it is object-usage or object
defining, we must be willing to accept
the consequences of that vision and be
ready to handle those challenges in or
der to keep M viable and growing
strong into the next century. •

Jerry E. Goodnough is a software develop
ment manager and chief architect of ESI
Technology Corporation's product called
EsiObjects.

John A. McManamon is a senior software
engineer at ESI Technology Corporation
and has been responsible for Object Tech
nology instruction and EsiObjects devel
opment.

ESI Technology Corporation is located in
Natick, MA, 01760; telephone 508-651-
1400, Fax 508-651-0708.

M COMPUTING 29

