M AND SOFTWARE

ENGINEERING

From ANS MUMPS to ISO M

by Wolfgang Kirsten

Introduction

At the beginning of 1994, I published a textbook for the Ger-
man-speaking audience titled Von ANS MUMPS zu ISO M—
Fortgeschrittenes Programmieren in M, which might best be
translated as From ANS MUMPS to ISO M—Advanced Pro-
gramming in M .[1] It was accepted very favorably and since
has become well known in Europe. A Russian translation will
appear soon, along with a Portuguese translation for Brazil.
But I think that the book is less known to the American M
community, soTam happy to have the opportunity to present
its basic ideas to the readers of M Computing. An English
translation is under negotiation at this time.

The book is aimed primarily at advanced M programmers.
There are several introductory texts, including the one by
Hesse and Kirsten in German.[2] Although From ANS
MUMPS to ISO M is likely to become a classroom textbook
and therefore contains all language elements of the new stan-
dard, it is more; it is very persuasive because it emphasizes
again and again the advantages of M compared with other
technologies. In many places, the book describes fundamen-
tal concepts of M. The explanation of the new language ele-
ments is imbedded in the frame of the general concepts of
computer science, and that is why I believe that this book
belongs in the hands of managers who want to implement
data-processing projects with M.

The chapter titles in the book are:

Chapter 1 The ANS MUMPS Standard

Chapter 2 Syntactical and Semantical Basics

Chapter 3 Software Engineering in M

Chapter 4 New and Advanced String Processing

Chapter 5 A System Model of M

Chapter 6 Networking in M

Chapter 7 Database Management

Chapter 8 Global Design

Chapter 9 Programming Portable Applications

Chapter 10 M Windowing Application Programming
Interface (MWAPI)

The third chapter conveys the textbook emphasis of this work
very clearly. For example, it includes all (new) language ele-

April 1995

ments and concepts that relate in any way to software engi-
neering, such as: program structure and structured program-
ming; subroutines or extrinsic functions; and error processing
according to the new standard.

This book contains these basic software engineering concepts
ina section on the productivity of M. Because I believe these
topics are of uniform importance for all who deal with M
Technology, I’ve chosen to reproduce in this article this por-
tion of the computer book so as to present my views of M
and software engineering.

Foundations of Software Engineering

When you work closely with a conventional programming
language, sooner or later you will ask yourself how com-
pletely that language supports the recognized elements and
regulations of software engineering.

In brief, software engineering is the management of the entire

life cycle of large-scale software projects. In the past M itself
was criticized because it did not allow for structured pro-

gramming and allowed the programmer to use its individual

language constructs—most especially indirection—to pro-

duce an erroneous, or at the very least a barely readable and

thereby poorly maintainable code. On the other hand, manag-

ers of M projects have emphasized repeatedly its high produc-

tivity, which is at least five times better than that of compara-

ble programming languages.

Finally, M is uniquely suited—say M supporters—to pro-
duce program generators, incorporating the required lan-
guage constructs achievable for that task with M—here again
indirection is mentioned. Meta-level generators further in-
crease M’s productivity.

Extensive literature on software engineering and M includes
articles showing how to achieve clear programming struc-
tures within M. A prime example of these is the documents
that Dr. Frederick Hiltz distributes at his advanced seminars
during the annual meetings of the M Technology Associa-
tion - North America. (Itis a pity that these witty scripts have
not yet appeared as a textbook.)

An article by G.E. Cole raised questions of efficiency and
program quality in M.[3] An article by Winfried Gerum com-
pared the control structures of different programming lan-
guages.[4] In 1993, Susan H. Johnston’s article discussed
the influence of programming languages on software costs,

M COMPUTING 21

comparing M to COBOL.. She received M Technology Asso-
ciation’s Distaso Award for this work.[5]

Second, the original German chapter emphasizes publications
that discuss questions of software engineering from a meta-lan-
guage viewpoint. Above all I must mention the two books by
Blum describing the special productivity with and the advan-
tages of M.[6,7] Bruce Blum is considered one of the foremost
experts of software engineering in the world, and he is also an
expert in M. Under his guidance, a clinical information system
written in M was developed. It was introduced between 1975
and 1983 at The Johns Hopkins University School of Medicine.
This development led to a high-grade CASE (computer-assisted
software engineering) tool named TEDIUM.

The third emphasis deals with reports that compare M with other
programming languages. Several works are cited below.
The Life Cycle of Software

The term software engineering originated during two NATO
Science Committee conferences in the 1960s. At that time,
large software projects were experiencing delays in initial de-
livery, faulty delivered systems (accompanied by expensive
improvements), or even termination of large-scale software
development projects (the worst imaginable case).

Related to those was the famous 1979 U.S. Government Ac-
counting Office report. It contained the results of a study
about the quality of delivered software. According to the re-
port, it is possible to classify projects as follows:

* 50 percent suffered from cost overruns;

* 60 percent suffered from delay;

* 45 percent of the ordered software could not be used;

* 29 percent of the ordered software was never delivered;
* 19 percent of the ordered software had to be revised;

* 2 percent of the ordered software could be used without
change.[8]

Since then, the reasons for these problems have been identi-
fied and recognized more clearly. They include:

* Poor project work;

* Missing or false expenditure estimates;

* Poor productivity;

+ Individual, nonmaintainable code;

* Missing or insufficient documentation; and

* Insufficient tests.

22 M COMPUTING ’

Research in the field based on these principles began to make real
progress. Structured programming was introduced to improve
code generation. In the area of software engineering, various
phases in the life cycle of a software product were recognized,
and several different models were put into practice.

Fundamentally, the whole process of producing software was
modularized into a life cycle, and the individual phases of that
cycle were examined very carefully. The phases of software
creation are generally acknowledged today to be:

* Definition of the requirements;

* Design of the application, design specification;
* Coding and single test;

* Integration and system test; and

* Routine installation and maintenance.

Splitting big software projects into separate phases represented
an important advance. It is particularly important, however, not
to view the individual phases as dogma; in particular, one phase
need not be completed before the next one can begin.

For some time, therefore, iterations have been built in the
cascading-design model ("waterfall model”). It was recog-
nized that the process of software production was not a se-
quence of clearly modularized steps, but an iterative process,
which leads ultimately from an initially defined problem to
a product that comes as close to the original ‘s;peciﬁcation as
possible. This process, of course, was known to the prac-
titioner all along.

The Seven Rules of
Software Engineering

On the basis of many years of experience in software production
in different projects and different settings, the following seven
rules are verified repeatedly (cited according to Blum).[9]

1. The rate of pure programming of a project is estimated at
approximately 20 percent. But 40 percent goes to analyzing and
designing, and another 40 percent is used for system integration
and testing. This rule is also known as the 20-40-40 rule.

2. Most of the errors found stem from the analysis and the
design phases; comparatively few are programming errors.

3. Verifying and validating components of the overall system
should start as early as possible. The later an error is detected,
the more expensive is its elimination. Once the product is deliv-
ered, repairing a mistake can cost one hundred times as much
as it would have cost during the design phase.

April 1995

4. The individual productivity of a programmer is indepen-
dent of the programming language used if one measures pro-
ductivity by lines of code generated per unit of time. If the
programmer counts the implemented functions per time,
however, higher programming languages clearly result in
higher productivity.

5. Because of the requirement for increased communication
between programmers, the individual productivity of a pro-
grammer decreases as the number of participants in a project
increases.

6. The most important factors affecting cost estimation of a
project are the quality and experience of the persons involved.

7. Maintenance costs of a software system during its lifespan
are usually twice as much as the original production costs.
More than half the costs arise from the improvements to the
original product, a quarter of the maintenance costs are caused
by adapting to changing needs, and only one-fifth of these
costs result frq‘m correcting the original code.

A Case for M

In a famous study by Alonso published in various places un-
der the title A Case for MUMPS at the beginning of the 1980s,
the author compared different characteristics of MUMPS and
COBOL.[10] His study produced important results, includ-
ing performance of database queries, that were very favor-
able to M[UMPS]. More importantly, however, Alonso dis-
covered that the relationship of the program lines (often
called LOC for lines of code) was 1:5 in favor of MUMPS.

These two statements mean that, on the average, a program
system in M uses only 20 percent of the program lines that
the same program in COBOL would use, and can be written
in one-tenth of the time. Still differently expressed: The pro-
ductivity of a COBOL programmer amounts to only 10 per-
cent of an M programmer, or a team of ten COBOL program-
mers achieves the same as one M programmer.

The results of this study are in line with findings of Munnecke
et al. who concluded that the LOCs had a ratio favoring M
by 1:4.[11] In a later article, Munnecke even measured 1:12
for the LOCs and 1:10 for the productivity.[12] Great care
in research was taken for both articles, which makes them
extraordinarily informative. Anyone interested in the prob-
lems of comparing M’s productivity to other computer lan-
guages should read them.

Also, Blum pointed out the advantages of the productivity
of M[UMPS] in great detail.[13] On the basis of a detailed
analysis of carefully kept records covering many years, he
came to the conclusion that the ratio of the LOCs is about
1:5, and that of productivity is higher than 1:8.

April 1995

Qur MEdit™ full-screen routine editor and customizable
MShell™ toolkit will cut your development time, and make
multi-platform development a snap!

We also offer expert consulting services for system
management, custom software, health care, and much more!

Call 1-800-370-1935
K\\},,X MclIntyre Consulting, Inc.

336 Baker AVE., Concord, MA 01742

2. &Y, (508) 371-1935 Fax: (508) 369-6693
k"\\/ " Email: msm@mcinc.com

STAFF SPECIALIST/
LEAD SYSTEMS
PROGRAMMER RIS

The University of Chicago Hospitals is
a world-class institution in a university
environment. The Radiology Depart-
ment develops and maintains its own
departmental information system, imple-
mented in MUMPS. Join a team of ex-
perienced programmers and physicians
supporting and extending this system.

Minimum requirements are a BS in com-
puter science or related field and 2 years
experience. Experience with VAX/VMS
and InterSystem M (MUMPS) is de-
sired. Must have excellent communica-
tion skills and the ability to work with a
diverse user group including physicians.

We offer a competitive salary and ex-
cellent benefits program. Please call
anytime:

800-590-4224

Equal Opportunity Employer

M COMPUTING 23

Finally, I want to cite another—yet unpublished, however, par-
tially known—German market review of a big enterprise, which
specifies that both ratios are 1:6 (LOCs and productivity).

These results are summarized in the following table:

LOCs Productivity
Study M:COBOL M:COBOL
Munnecke et al. 1:4 no statement
Munnecke 1980 1:12 1:10
Alonso 1984 1:5 1:10
Blum 1990 1:5 1:>8
German Study 1990 1:6 1:6

Table 1. The ratio of lines of code (LOCs) and the productiv-
ity between M and COBOL by various studies.

What are the reasons for these results if you also take the
above seven rules into consideration? One could argue that
LOCs are a poor measure for a comparison between M and
COBOL because in M several commands stand in one line,
which is not the case in COBOL. That might be true on the
average, but Munnecke pointed out in his case study of 1980
that the number of characters in two equivalent programs,
which describes a better measure, will result in a ratio of
about 1:10 also.

The reasons for the much higher productivity lie deeper: M
is a programming system and not just a programming lan-
guage. M incorporates an integrated multiuser database sys-
tem (which, of course, is no database management system
in today’s sense) and contains language elements for input/
output and those that in-other languages are relegated to job
control language (JCL).

Munnecke referred to this fact when he said that a COBOL
project is never realized solely in one language, but required
the knowledge of at least a dozen other system functions with
nearly two thousand pages of system documentation tolearn,
understand, and apply.

M is complete and comprehensive. It does not require the
database specialist, the JCL guru, the transaction-processing
monitor expert. Only the M specialist is required. With M,
and only with M, is it possible to program complete, opera-
tive application programs for customers’ implementation.
Another observation is that M represents a programming lan-
guage one step higher than COBOL and comparable lan-
guages. Software houses that are successful in the M market
used to develop all their applications inhouse, but nowadays
there are M generators on the market to further simplify appli-
cation development in M.[14]

24 M COMPUTING

Normally these tools comprise not only the actual coding—
which according to Rule 1 takes only 20 percent of the total
time—but all phases of the software-development process.

Blum pointed this out in his book on TEDIUM, in which
he estimated the increase in productivity through the use of
TEDIUM against M would be four times higher (the same
ratio of improvement noted for M over COBOL). The other
named tools are probably similarly productive.[15]

On the basis of a record extending for many years, the aver-
age per day program lines produced in TEDIUM and a com-
parative analysis of the same codes with M and COBOL,
Blum concluded that fifteen lines in TEDIUM represent
about sixty lines in M and these compare to three hundred
lines in COBOL. Here Rule 4 applies, which states that pro-
grammers write approximately the same number of lines per
unit of time in any language; however, one line in M is five
times as productive as one in COBOL. TEDIUM on the other
hand is four times as productive as pure M code would be.

Program generators permit far larger-scale prototyping (they
are an essential prerequisite for these tasks) than could be
done using pure programming languages. Prototyping helps
to avoid errors in analysis and design and helps us recognize
them earlier. In this context, Rule 2 and Rule 3 are applicable.

Communication in Project Teams

Both of Blum’s books devote significant space to communi-
cation within a project team, which increfises exponentially
with each additional member. He discussed the known “Rule
of Five,” referring to the idea that a maximum of five people
can cooperate effectively at a functional level. It clearly is
proven that individual productivity decreases with the size of
the team, which was expressed as Rule 4. Larger teams use
too much time in tuning themselves and thereby become inef-
ficient. This rule also pertains to higher hierarchies of man-
agement. This means that five groups will be supervised from
one manager and in turn five managers will be supervised
from one upper-level manager. Three levels of hierarchies
are needed for projects involving more than 130 employees.

As an example, Blum showed us an application he created
called OCIS (a large tumor-information system), which is
composed of six thousand lines in TEDIUM. Under the men-
tioned conditions, these would be equivalent to more than
one million lines in COBOL and would need a large develop-
ment team within which a great factor for internal communi-
cation must be calculated. Blum stated that such a project
would be classified as nonpracticable before it has begun, at
least in a hospital setting.

April 1995

Indeed, most known large M applications such as FileMan
and TEDIUM have been developed and written by only a
small number of persons.

Now, a final remark about program maintenance mentioned
in Rule 7, which is often viewed with skepticism for M appli-
cations. In my judgment, this skepticism is groundless. The
already-mentioned German study from 1990 concluded that
the maintenance effort for M programs is six times less than
for comparable COBOL programs. This ratio is about equiv-
alent to the productivity advantage and it is plausible to as-
sume that an experienced M programmer can, in a given time,
modify as many lines in M as an experienced COBOL pro-
grammer can modify in COBOL, except that a line in M is
five times denser than its COBOL equivalent. This means
that the maintenance productivity is five times greater.

The readability of programs (as an important prerequisite for
the maintenance) is strongly dependent on the experience of
the programmer. Susan Johnston showed us an example in
her 1993 article."She compared the Evaluate-Statement in
COBOL with the gseLECT function in M. Both of the follow-
ing program segments are roughly equivalent:

COBOL
Evaluate TYPE
When 1
Move "a" to NAME-CODE
When 2
Move '"b" to NAME-CODE
When 3
Move '"c" to NAME-CODE
When other
Move " " to NAME-CODE
End-Evaluate

SET NameCode=$SELECT(T=1:"a",T-2:"b", T=3:"c",1" ")

The program segment in COBOL reads easily. An M program-
mer has no difficulties with the $seLECT. What is immediately
astonishing is how short M’s formulation is. This leads overall
to shorter programs in M, which in my opinion are much more
readable than the page-by-page printouts in COBOL. n

Wolfgang Kirsten, Ph.D., M.Sc. in mathematics, is a scientific worker
in the Center of Medical Informatics at the J.W. Goethe University
Medical Center in Frankfurt, Germany. He is a member of the M Devel-
opment Coordinating Committee - Europe, of the Board of Directors
of the M Technology Association - Europe, and editor in chief of M
Professional. Kirsten is also coauthor of an introductory textbook on
M, and is an assistant professor for advanced programming in M for
computer science students studying medicine as a minor subject.

April 1995

Endnotes

1. W. Kirsten, Von ANS MUMPS zu ISO M - Fortgeschrittenes Pro-
grammieren in M (Epsilon Verlag Darmstadt Hochheim, 1994).

2. S. Hesse and W. Kirsten, Einfuhrung in die Programmiersprache
MUMPS, Second Edition (Berlin, New York: de Gruyter, 1989).

3. G.E. Cole, “Perspectives on Program Efficiency and Quality,”
MUG Quarterly 17:4 (1989): 47-49.

4. W. Gerum, “The Marvels of the FOR-Command,” MUG-Europe
Newsletter 8:2/3 (1991): 6-7.

5. S.H. Johnston, “The Effect of Language on Software Costs,” M
Computing 1:3 (1993): 39-54.

6. B.I. Blum, TEDIUM and the Software Process (Cambridge, MA
and London, England: MIT Press, 1990).

7. B.1. Blum, Software Engineering: AHolzstzc View (Oxford Univer-
sity Press, 1992).

8. U.S. Government Accounting Report cited from Blum, 1992.

9. Blum, 1990.

10. C. Alonso, “A Case for MUMPS,” Computerworld (January
1984).

11. T. Munnecke et al, “MUMPS: Characteristics and Comparisons
with Other Programming Systems,” Medical Informatics 2:3
(1977): 173-196.

12. T. Munnecke, “A Linguistic Comparison of MUMPS and
COBOL,” AFIPS Conference Proceedings (49) (1980): 723-729.

13. Blum, 1990.

14. Munnecke, 1980.

15. Blum, 1990.

CALENDAR

June 1-4, 1995

MUMPS Development Committee meeting, Hyatt Regency
O’Hare, Chicago, Illinois. Call 301-431-4070 for details. '

June 5-9, 1995

M Technology Association, 24th Annual Meeting, Hyatt
Regency O’Hare, Chicago, Illinois. Registration packets
shipping early March. Call 301-431-4070 for details.

July 23-27, 1995

International Medical Informatics Association Medinfo *95. Van-
couver Trade and Convention Centre, Vancouver, British Colum-
bia, Canada. For information, write Medinfo 95 Administration
Office, Suite 216, 10458 Mayfield Road, Edmonton, Alberta,
Canada. Phone: 403-489-8100; fax: 403-489-1122.

October 15-19, 1995

ACM’s 10th OOPSLA (Object-Oriented Programming, Systems,
Languages, and Applications), Austin, Texas. For information on
the meeting contact the OOPSLA 95 Office, 7585 SW Mohawk
Street, Tualatin, Oregon 97062. Phone: 503-691-0890; fax: 503-
691-1821; e-mail: oopsla95@acm.org.

November 6-10, 1995

MTA-Europe Annual Meeting, Barcelona, Spain. For informa-
tion, contact the MTA-Europe Office, Avenue Mounier 83,
B-1200, Brussels, Belgium. Phone:32-2-772-9247; fax: 32-2-
772-7237.

M COMPUTING 25

