
JUST
ASK!

Bad Code, Good Code

J
ust Ask! always has been written
anonymously. I undertake the job
with much respect for my back­

stage predecessor, who established a
high standard to follow. Like the Stage
Manager in Thornton Wilder's Our
Town, I expect to set the players in their
positions, offer some introductory and
explanatory comments, and occasion­
ally step into the action. You are the
players. Do you have a question that de­
serves discussion? Have you found a
good answer to someone else's question
that you would like to share? How about
a controversial question and a discus­
sion of pros and cons? If you prefer that
your name not be published, please say
so in your contribution, which should
be sent to the managing editor at M
Computing.

Question: How should I recognize
good code when I see it? What are the
hallmarks of good programming tech­
niques?

C. Greenock sends a fine example con­
trasting bad code that ''works" and good
code that also works:

It is not uncommon to have to write
searches to allow a user to enter some
or all of the search parameters. This can
lead to some quite convoluted code
when attempting to order down a global
where a search key may be null or not.

For example, a user attempting to find a
patient may enter any or all of surname,
forename, middle name, and date of
birth. We'll assume for the sake of argu­
ment that we aren't interested in partial
matches and that the index global is
structured as shown here:

18 M COMPUTING

by Frederick L. Hiltz, Stage Manager

Aix(surname,forename,middlename,
dob,integer)=patID

The original solution was structured
roughly as shown in figure 1. Horri-

FORE FOR DO QUIT: (END! (FORE=""))

the next line .. DO FO' = 1111
• • • from

position p 1 (as marked in the com­
ment above); otherwise a $ORDER() is
performed at position p3 to obtain the

.; We have a known key so drop to next level

.IF SURN'="" DO MID

.; Otherwise retrieve key.

.IF "END SET FORE=SORDER(Aix(SURN,FORE)) QUIT:FORE=""
QUIT

MID FOR DO QUIT: (END! (FORE='"'))
. IF FORE'='"' D DOB
.IF 'END SET MID=SORDER(Aix(SURN.FORE,MID)) QUIT:MID='"'
QUIT

DOB similar code to above and determine end condition

Figure 1. Sample of unsatisfactory code, although it works.

ble, isn't it? And this was an attempt
to avoid spaghetti code. It worked but
was unsatisfactory.

The code in figure 2 achieves the
same ends as that in figure 1, but a

DO ; start search
. ; pl p2 p3

first surname on the index and control
then moves to .. DO FO' = 1111

• When
the code at .. Do F0'= 11 11 passes con­
trol back to the line 3eove, it will ei­
ther pass control back to position p2

.DO:SU'='"' QUIT:SU'="" FOR SET SU=SORDER(Aix(SU)) QUIT:SU="" DO

.. DO FO'="" QUIT:FO'="" FOR SET FO=SORDER(Aix(SU,FO)) QUIT:FO="" DO

... DO MID'="" QUIT:MID' ="" FOR SET MID=SORDER(Aix(SU.FO,MID)) QUIT:MID='"' DO

.... DO:DOB'="" QUIT:DOB'="" FOR SET DOB'SORDER(Aix(SU,FO.MID,DOB)) QUIT:DOB="" DO

..... DO WHATEVER

Figure 2. Successful code.

great deal more compactly and more
obviously. If we are not looking for
partial matches (i.e., not aiming to re­
trieve WILLIAMSON as well as
WILLIAMS on a search for a sur­
name WILLIAM) then the code re­
quires no further modification.

Examining line . DO : su' = 1111
• • • we

see that if a non-null surname (SU) is
supplied that control will be passed to

(if .. DO FO' = 1111 was invoked from po­
sition pl) or to position p3 if .. DO

FO' = '"' . . . was called from position
p3.

Notice the indent at the first line of
figure 2. This is required because, in
the case of a known surname, the rou­
tine would quit after the code in the
nest had executed. An alternative, to
reduce the level of nesting, would be
to place the search in a subroutine.

April 1995

I
I ,
I

i

J

,,.

A Report Generator That Really Measures Up!
T~E REPQRTER™ ~ "the most powerful and ThE ™

easy to use report writer in the market today ... " REpoRTER
.YoUI'§

1 . Windows-based ••••..••••••.•••.•.••••••..•••••

2. Does cross-tab reports •.•••••.••••..•••••..•••••

3. Easily adds graphics and full-featured charts .•...•••

4. Produces WYSIWYG reports •.•••••••.••••••••.•

5. Connects to all popular databases including M .•••••

6. Exports to all popular Windows applications •••...•

7. Includes database- and report-specific security •••.••

[!]
[!]
[!]
[!]
[!]
[!]
[!]

If your report generator doesn't measure up, call us.

-•ge Systems Inc, (800)-535-4585
::!::I===:=:=::::::::=:::{ 3 CENTENNIAL DRIVE, SUITE G. D PEABODY, MA 01960

··.:-:•:-:;::::::::;::••·=·=···

A useful variant of this idea, given in
figure 3, makes coding of "inter­
ruptible" searches/processes a little
easier. Care has to be taken to ensure

program to extend it or adapt it, sev­
eral things about figure 2 promote that
communication:

; Retrieve keys from cache, returned null if start of search .
DO GETKEYS(.Kl, .K2, .K3)
SET PAUSE=O

SRCH DO
.DO:Kl'='"' FOR SET Kl=SORDER("glob(Kl)) QUIT:Kl="" DO QUIT:PAUSE
.. DO:K2 '='"' FOR SET K2=SORDER("glob(Kl.K2)) QUIT:K2="" DO QUIT: PAUSE
... DO:K3'="" FOR SET K3=SORDER("glob(Kl,K2,K3)) QUIT:K3="" DO QUIT:PAUSE
.... SET PAUSE=SSPAUSE IF PAUSE DO SAVEKEYS(Kl,K2,K3) QUIT
.... ; Examine pause flag before processing to ensure that PROCESS is
.... ; not run twice over the data represented by Kl,K2,K3 .
.... DO PROCESS

Subsequent code.

Figure 3. Code variation.

that the appropriate keys are cached
to avoid repeating PROCESS for the last
data retrieved.

Stage Manager: Figure 2 is easily
recognized as better code than figure
1. Why? The most important purpose
of a program is to communicate a
method from one person to another,
right? When the next person reads this

April 1995

• The structure of the method is clear at
a glance. How long would you study
figure 1 to discover the nested loops?

• Figure 2 contains no labels. We can
read it from the top down, confident
that it will not be entered in the mid­
dle. Good code reserves labels for
reusable subroutines and func­
tions-a subroutine called from

only one place usually indicates a
structure problem.

GOTO destroys more structures than
any other command. Good code
uses it only to create structures not
available directly in the language, a
truly rare requirement. When GOTO

disappears, so do many labels.

• "Flag" variables often signify bad
structure. Figure 1 needs the END

variable for that reason. Ask of ev­
ery variable, "Does it pertain to the
application, or does it merely serve
this program?" If the latter, then a
better structure is almost always
available. M

Frederick L. Hiltz, Ph.D., develops medical
information system software at Brigham and
Women's Hospital, Boston, Massachusetts.

C. Greenock, a senior analyst/programmer
with SWift Information Technology in Bris­
tol, England, contributed the substance of this
Just Ask! column.

M COMPUTING 19

