
NEW TECHNOLOGIES

A Successful Alternative Approach
to MWAPI

lJy Luiz Carlos Lobo

Introduction
The M language offers a set of features that distinguish it
from other types of programming languages. These features
are responsible for its longevity and programmers' loyalty.
First is the simplicity: It takes care of the complicated part of
programming-such as dealing with files, input-output, and
data management-leading to clearer and shorter code. Sec
ond is the the lightness (speed): It delivers better performance
than languages that provide database control, considering the
same platform configuration. The statement "M lets you de
velop and run applications faster than normal languages" re
flects M community expectations, and those should be the
most important considerations for implementers whenever
new M features are being conceived.

When our development team at Extensao first studied the
MS-Windows interface, there was a big challenge to port
SuperMUMPS, the company's M language implementation.
At issue was the transformation of a very complicated pro
gramming environment into something that M programmers
could code instinctively. Extensao decided to adhere to the
MW API specification. As in otherM Windows implementa
tions, great portions of the SuperMUMPS for the MS-DOS
product code were used to build a dynamic link between the
MS-DOS and the Windows interface. A prototype was made
available to some of our experienced beta-tester customers.
The feedback we got from them was very loud and clear: "Is
this the evolution of M? Too complicated! We are seriously
considering Visual Basic!"

This was not the response the company expected. The reac
tion at Extensao went something like this: "Well, let's review
the project and plan it all again." Two things came to our
minds. First, that Microsoft had brought BASIC back to life
when it created a great hybrid event- and nonevent-driven
language. Second, that by using the MW API programming
style, we could generate lots of work for programmers and
affect M environment performance. These ideas were com
pletely the opposite of the basic guidelines for M mentioned
above. We knew we were headed in the wrong direction!

14 M COMPUTING

This article introduces the alternative that we ultimately de
veloped. The article does not present an in-depth comparison
between the alternative and MW APL

If BASIC Got There, Why Not M?
We decided to implement the Visual Basic programming
style in the M language. The only way to do that was to re
write the code from scratch, but this time we did it in strict
conformance to MS-Windows architecture and treating it as
a new operating system, not as an MS-DOS extension. This
allowed us to use all the power Windows can offer at a high
performance level.

High- or Low-Level Language?
Pro=mers Hicll-Level LanonoOP

VISUAL (F.asy to Program)
BASIC
PROGRAMMING

STYLE MWAPI

M M

MS-WINDOWS MS-WINDOWS Low-Level Lanonooe

(Difficul~ Program)

Extensao also had expected an explosive growth of the Win
dows and Windows NT market in Brazil. We knew that this
new approach would demand extra effort from the company
and that it could take too long to off er the product. We intro
duced this product as Visual M to the U.S. market at the 1994
MTA-NA Annual Meeting in Reno. Actually, the product is
named VISUAL TECH, due to copyright misunder
standings.

All the effort has been worth it. We showed a beta version
of VISUAL TECH at FENASOFT in 1993, a huge Brazilian
COMDEX-type show. At that time, VISUAL TECH already
had embedded SQL connected to Sybase and Informix DB
servers running under UNIX. It was a success! The language
proved itself very easy to code and faster than we ourselves
could ever imagine. The language was designed for a
386@40 Mhz PC with as little as 4 megabytes of memory.
Eighty percent of the Brazilian MS-Windows installed base
platform configuration matches this.

But why is this Visual Basic approach faster and easier to
program thanMWAPI? It is faster because it is easy to code.
How does it work? The whole program is based on one

April 1995

command and three functions. MS-Windows has objects
such as buttons, list boxes, and radio buttons. Each of these
objects can receive events such as a click, a double-click, a
mouse down, a key-up, etc.

How can you create a Windows form? One needs only to open
a window with a single command (ZGW Open-Graphical
Windows Open) and then insert objects (ZGW Insert) with
their properties. (Properties refer to objects' characteristics
such as identification number, foreground color, position,
size, visible state, font name, size, etc.)

A routine will be ready to show the form on the screen, but there
is no code associated with events at this time. Actually, the M
routine will be receiving dozens of different events per second,
but that is not the user's problem; it's VISUAL TECH' s problem
to solve. (Remember a primary characteristic of M: it takes con
trol of the boring part of the task). The user selects the event to
intercept by coding a label with its name. VISUAL TECH looks

hdemol Employee Selection Screen

+l KILL
+2 SET v(l)="John Smith"
+3 SET v(2)="Henry Marshall"
+4 SET v(3)="Paul Stone"
+5 SET v(4)="Blair Karlson"
+6 SET v(5)="Mary Hellen"
+7 SET v(G)="Hellen Boyer"

through the code labels to check if the user wants to grab the
event, otherwise VISUAL TECH itself takes care ofit bypassing
it back, treated, to MS-Windows.

So, if a programmer wants a picture to receive a click on it, he
or she just has to insert a label "CLICK" concatenated with that
object'sIDnumber(e.g., label CLICK7) followed bytheMcode
the programmer wants to execute for that click. A QUIT com
mand will return the routine to the wait event mode automati
cally. The same windows command with a different argument
closes the form (ZGW close). The programmer can accomplish
all the tasks needed to build powerful and fast windows applica
tions in minutes, with all the MS-Windows capabilities, includ
ing 100 percent multimedia control.

The sample code in figure 1 shows how a Windows form lists
employees with their photographs and changes as the user
selects a different employee name. Notice in the example that
each object has one identification number, and when an event
occurs (i.e., the user clicks the "OK" button) it generates a

+8 ZGWINDOW open(callback="hdemol":id=l):Captiont-"Employee Selection Screen":posx=21:posy=27:widthJa64:
+9 height=238:backcolor=l6777215:model=l)
+10 QUIT

CREATE!
+l

+2

+3

+4

+5
+6
+7

CHANGE3
+l
+2

COOANDl
+l
+2
C01,11,1AN02
+l

END
+l

16 M COMPUTING

; Object list
ZGWINDOW insert(type="PUSH":id=l:parent=l:caption="OK":
posx=253:posy=l73:width=93:height=27:fontname="System":
fontsize=lO:align=O:tabstop=l)
ZGWINDOW.insert(type="PUSH":id=2:parent=l:caption="Cancel":
posx-147:posy=l73:width=93:height=27:fontname="System":
fontsize=lO:align=O:tabstop=l)
ZGWINDOW insert (type="LIST": id=3: parent=!: captiont-'"':
posx=l3:posy=l3:width=l87:height=l46:fontname="System":
fontsize=lO:align=O:tabstop=l)
ZGWINDOW insert(type="PICTURE":id=4:parent=l:captiont="":picture="dp2.bmp":posx=213:posy=l3:width
=133:height=l36: .
fontname="System":fontsize=lO:align=O:tabstop=l)
for i=l:1:6 SET x=SZGL(addlist,1,3.v(i))
SET x=SZGL(selitem,l,3,0)
ZGWINDOW focus (parent=!: id=3)
QUIT
; Here the user selected another employee name

SET x=SZGL (getcursel,1,3)+1
SET SZGWINDOW(picture,l,4)=x ".bmp"
QUIT -
; click the button OK

SET sel=v(SZGL(GETcursel,1,3)+1)
GO END
; click on the button CANCEL

SET sel=""
GO END

ZGWINDOW close(id=l)
QUIT

Figure 1. Sample code for employee identification.

April 1995

COMMAND event followed by the identification number of
that object (e.g., COMMANDl). VISUAL TECH branches to the
corresponding label and executes the code until it reaches a
QUIT command. Figure 2 shows the results of the code.

Why is it faster? First, because it is specifically developed
for MS-Windows rather than using adapted code, it allows
the language to take advantage of all MS-Windows capabili
ties to make the code faster. Also, this version includes new
algorithms that speeded it up. Third, the MW API disk and
memory-intensive transferring architecture dramatically
slow down an application running under the MS-Windows.

To understand the difference between VISUAL TECH and
MW API internal architecture, let's examine how an M object
routine is executed in each approach.

With the MW API approach, during the compiling, the pro
grammer completes the code as a normal routine. No MS
Windows optimization is done. To implement the program,
the programmer requests it to run a routine. Then, the lan
guage access~ the disk and brings the object code into mem
ory. Third, the language executes the code that launches a
MERGE command. Next, the MERGE command searches the disk
for defined globals and, after many disk accesses, brings data
to the global buffers. Then, the language converts these data
at run time to the MS-Windows internal-memory-structure
format.

Next, the language tells Windows to look up these trans
formed data to open a Windows form. The programmer must
manipulate the Windows events inside the M routine, making
additional use of the CPU.

Contrast these several steps with the VISUAL TECH approach,
which entails fewer steps. While compiling the routine, all
needed data are present already. The language converts the data
to the MS-Windows internal-memory-structure format, and
stores them in the object code. Everything takes place at compil
ing time in just one step. To run the program, the programmer
requests a routine. Second, the language accesses the disk and
brings the object code into memory. Next, the language executes
the code and tells Windows to look up the data prepared at com
piling time to open a Windows form. Fourth, the language takes
care of the Windows event for the programmers.

Conclusions
As demonstrated here, the basic concepts of the two ap
proaches are very different. We don't dislike MW API at all.
In fact, its good portability motivates us to offer it soon as a
second optional way to access Windows from VISUAL
TECH. But how high is the price ofMWAPifor the M world?
In our opinion, it is dangerous to off er such a slow (heavy) perf or-

April 1995

Figure 2. The employee selection screen that results from
the code.

mance and complex programming style solution without check
ing out some other good alternatives on the market. To depend
upon a configuration of 8 or 16megabytes of memory on a 486 or
Pentium machine to obtain a questionable performance doesn't
seem to be a very attractive option for the customer. With all
my love for M, I would still consider the choice between Visual
Basic and MW APL The VISUAL TECH approach proves to
be very competitive because it offers a faster performance
(lightness) and an easy programming style (similar to Visual
Basic). In Brazil, VISUAL TECH has been used extensively as
the M solution for Windows. Nowadays, programmers who
used Visual Basic and changed to VISUAL TECH say they find
its environment to be more flexible and faster than the best-seller
Visual Basic.

Is M for Windows competitive? You bet! .,
Luiz Carlos Lobo is an electronic engineer and earned an M.B.A. He
co-founded Extensiio eight years ago. He also is former director of
MTA-Brazil. He is presently offering Extensiio's M languages in the
U.S. market through X-TENSION Software Corporation .

., COMPUTING 17

