
NEW TECHNOLOGIES

Mand Robotics

by Max Rivers, James Poitras, and Pablo Halpern

Abstract
Besides being an excellent database and graphical user inter­
face tool, M has proven itself in the development of commer­
cial and medical robotics. This article describes two commer­
cial projects and one medical robotics project. The first
commercial project uses M as a front end to a PASCAL­
driven robot; the second commercial product involves direct
control of hardware from M. Both of these systems dispense
precise amounts of colorants through pumps to generate paint
mixtures according to manufacturers' formulas. End users
will be hardware store clerks who custom mix paint for con­
tractors and other customers.

In the third project, a medical application, a robotic pill dis­
penser is connected to a pharmacy prescription package, so
that the pills are counted and dispensed, and a label is printed
as the prescription is filed into the database.

Introduction
For years, the M programming language has been inaccu­
rately typecast as just a "medical data management" lan­
guage. M Technology has come a long way from its exclusive
use as a medical database language. In the commercial appli­
cations described in this article, Mis a natural choice because
of its power as a database manager. The two commercial sys­
tems documented here require searching and updating large
databases by unsophisticated end users, so we decided to use
a graphical user interface (GUI) for the front end, another
application for which M is well suited.

In a matter of weeks we developed a 4GL screen generator
(fourth generation programs produce M code from data-in
this case screen definitions). These screens are then driven
by a generic front end that is independent of the content of
the application. This is desirable because each colorant man­
ufacturer designs its formularies differently, and wants to
have a unique look and feel to its end product.

As a side note, this front end required about three thousand
lines of M code and six weeks of one programmer's time.
This replaced forty thousand lines of PASCAL code, which
took more than two years to program.

10 /I COMPUTING

Another interesting side note about these projects is that because
the customer base is worldwide, all text displayed had to be
language-independent. To accomplish this, all text written to
the screen goes through a translator. By setting a software switch
(which can be·password- or function-key-activated) the entire
system instantly translates between languages.

Commercial Application Using
Interrupts and TSRs
In the first project, the hardware communicates to the com­
puter through a proprietary circuit board, which requires soft­
ware written in a compiled language (because of timing is­
sues). The PASCAL driver designed for this purpose took
the form of a "terminate and stay resident" (TSR) process.
On booting the machine, the TSR loads into RAM (random
access memory), with its beginning address stored into the
Interrupt Table. Each entry in the table has a number assigned
to it, which becomes its interrupt identification. DOS re­
serves some of the interrupt addresses for things like disk I/O
and keyclicks, while others are left open for use by software,
such as this TSR. Once loaded, the TSR becomes dormant
(but stays ready-with its territory in RAM remaining re­
served for its code) so that another process~an run-in our
case the M system.

When a user presses a key or when there is an internal clock
tick (which happens 18.2 times per second), a hardware inter­
rupt is generated, signalling DOS to get the starting address
from its Interrupt Table and run the code at that address. That
process then executes to completion, at which time control
returns to the next instruction on the process that was inter­
rupted. Interrupt modules tend to be coded very compactly
so that the interruptions are as short as possible.

In the case of a software interrupt, the software voluntarily
interrupts itself, almost like calling a subroutine, except that
using an interrupt allows for the call to be programming-lan­
guage independent.

In the application described here, the M front end interacts
with the user, who selects a particular color. M then gets the
formula for that color from its database, and writes the color­
ant amounts to be dispensed into the memory registers of the
CPU (central processing unit). It then triggers the TSR' s soft­
ware interrupt. (See code sample in figure 1.) The interrupt
activates the TSR, which reads the data from the registers,

April 1995

MOTORINTERRUPT(FORMULA.STROKE,POSITION)
+l SET CONTROLIRQ=96
+2 ; 96 (Hex) is the Interrupt Table entry assigned to this TSR
+3 SET VELOCITY=ll3858,ACCELERATION=66976
+4 Parameters used to drive the motor
+5 SET AX=32769
+6 Register AX tells the TSR which function to run, in
+7 this case the function 32769 means "Motor GoTo
+8 Absolute Location" stored in variable POSITION which
+9 is calculated based on the amount of colorant needed
+10 SET

DATA=SZLC(POSITION) SZLC(VELOCITY) SZLC(ACCELERATION)
+11 SZLC-function converts ASCII into the Long Integer

RTN

·-:\

+12 format expected by the TSR (Extension to standard M)
+13 ZC HCOLLECT
+14 ; Hold RAM memory stable (Extension to standard M)
+15 SET PTR=Sv(l5,DATA,-15)
+16 PTR is the Pointer address of the variable DATA which is
+17 a comma delimited string that contains the amounts of
+18 each colorant to be dispensed
+19 SET BX=PTR\65536,CX=PTR#65536
+20 ; Registers BX=Segment address, CX=Offset address
+21 SET REGISTERS=SZWC(AX,BX,CX,0,0,0,0,0,0)
+22 SZWC does what SC does. except that it puts Binary values
+23 into RAM instead of the ASCII equivalents
+24 ZC #INTCALL(REGISTERS,CONTROLIRQ,O)
+25 This is the Interrupt! (Extension to standard M)
+26

+l
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13

;What did we get back?
;REGISTERS=loAX hiAX loBX hiBX loCX hiCX loDX hiDX ...
; Returns error boolean in loDX (DL),-O=no-error, !=error
SET ERR=SEXTRACT(REGISTERS,7)
IF ERR QUIT
SET PERCENT=SEXTRACT(REGISTERS)
IF PERCENT=lOO QUIT

loAX has the percent done. When it equals 100,
the motor has arrived at the ending location
passed to the TSR in variable POSITION

DO SHOWPERCENT
subroutine (not shown) to draw bar graph on screen

GO RTN
Continue to loop until error or done

Figure 1. Sample (simplified) code to instruct the TSR to move the pump motor.

and performs one discrete part of the requested process at
each clock tick: dispensing exact amounts of each colorant.
It then puts a number into a register indicating the percentage
done, resets the interrupt to go off at the next clock tick and
becomes dormant, allowing M and DOS to continue until the
next tick. This simulates a multitasking system under DOS.
After dispensing all the colorants, the TSR returns either an
error or completion code to the appropriate register and turns
the interrupt off.

While this processing goes on in the background, Muses the
time in between clock ticks to draw a percent-completion bar
chart on the screen (based on the information passed through
the register from the TSR) to give the user visual feedback
about how much of the process is done. When M receives a
completion message from the TSR, it passes this on to the
end user in graphical form-either as an error message with
explanation (obtained from a table) or with a message about
successful completion.

ful user interfacing, and fast code development. But instead
of thinking of M in its strictest, and earliest, use as a commu­
nicator of medical information between a user and a database
(as might have been the case a few years ago), we added a
unique third party-a TSR written in PASCAL. In this case,
the PASCAL was necessary because the controller board re­
quired timing intervals from the software that only a fully
compiled language could offer. In the next application to be
discussed, this requirement is not present, and M interfaces
directly with the hardware.

This application employs many of the known strengths of the
M programming language: strong database functions, power-

April 1995

Commercial Application with
Direct Control
In the second project, the board specifications were coded
directly in M. All communication to the circuit board is done
through a one-byte register on the board. Each of the eight
bits signifies one mechanical function of the robot. Position
one, for instance, signifies the direction of the pump, either
up (1) or down (O); position two turns the pump on (1) or off

M COMPUTING 11

(0), etc. In this way it is possible to send single or multiple
commands such that, for instance, "00000011" would tell the
robot to turn the pump on, moving downward.

The programmer must be careful, however, to preserve the
current state of the registers. If the current state is 00001100,
then sending 00000011 not only turns positions one and two
on, it also turns three and four off. As a safeguard, we use a
local variable, SHADOW, to keep a record of the current state.
Doing a mathematical "OR" with the current state of the reg­
ister, adds new commands to the SHADOW state, without turn­
ing the existing ones off (00001100 "OR" 00000011 yields
0001111). To turn a particular bit off, we use the mathemati­
cal "AND" with a zero value, because only 1 "AND" 1 equal
1. All other combinations yield zero. (See sample code in
figure 2 for example.)

It isn't possible to WRITE to the circuit board, as if it were a
screen or a printer, because it is not a standard output device.
Instead, we used a DataTree MUMPS extension to the M
language called zouT. zouT "writes" out to a DOS-level ad­
dress. It takes three arguments: the address of the circuit
board, the value (in binary) that is being written, and an argu­
ment that tells the system if the value is in long (16 bits) or
short (8 bits) word form.

This second application, through a few extensions to the M
programming language, demonstrates the potential for a
whole new arena for M systems. Many implementations of
M are now layered over other operating systems. Accessing
software (as in the case of the TSR) and hardware (as in this
second case) at the operating-system level extends the reach
of developers of M far beyond database management and re­
port writing. This "reaching out" into the physical world has
application in many fields, including medical, as this next
application demonstrates.

Medical Application Using
Software Interaction
In this medical robotics application, we were required to con­
nect a hospital pharmacy system to an automated pill dis­
penser, called a Baker Cell Counter. This particular machine
has sixty-four pill containers (eight rows by eight columns),
each of which has the ability to count and dispense pills and
send them down a chute into a holding place, where they
remain until a technician puts a bottle under the chute and
lifts a gate, releasing the pills into the bottle.

This particular pharmacy package has the capacity to route
the printing of a label to a printer in the pharmacy from any
doctor's office in the hospital. This project added the auto­
mated dispensing of pills to this process. When a prescription

12 /I COMPUTING

is filed, besides generating a request to print the label, an
entry is made in a global queue for the Baker Cell Counter,
which contains the medicine's identification and the number
of pills to dispense.

This addition to the Baker Cell file triggers a routine that
looks to see if that drug is one of the sixty-four currently in
the robot. If not, the request prints on a CRT next to the robot,
and a technician manually fills the prescription after the label
prints out. If the drug is in the Baker Cell's database, the
software opens the port connected to the robot, and outputs
a command with the cell number (gotten from the database
under the drug's identification) and the number of pills, and
then waits for a response from the Baker Cell. If the cell
counts and dispenses the pills successfully, a record comes
back reporting the success. If an error occurs (not enough
pills in the hopper, a crunched pill jammed the mechanism,
etc.), the record contains a code that, to the best of the ma­
chine's ability, describes the problem, and then the software
displays an error message on the CRT beside the machine.
The message indicates which cell has the problem and what
the problem might be. The program then waits for either a
"try again" or "cancel" response from the technician.

This unusual M application, even in its customary medical
environment, points to new and exciting areas that hospitals
and their information systems departments could consider for
more fully exploiting the power of M Technology. We have
been involved in such far-reaching medical applications in
M as speech recognition systems in operatilig rooms to aid
in updating scheduling information in real time. Another
project developed a system to telephone patients at home and
generate spoken reminders each day to take their medica­
tions. The system then waited for a touch-tone telephone re­
sponse indicating compliance.

With the expanded view of M that these kinds of applications
inspire-that is, a system that can reach out into the physical
world of the hospital and beyond-it becomes clear that there
are many unexplored and untapped possibilities for aiding in the
care of patients that extend far beyond medical record keeping.

Conclusion
Fax and copy machines now can come fitted with devices
that transmit data about how many pages have been printed,
and which client should be billed. Some phone systems come
with logic boards that can transmit long-distance costs di­
rectly into M billing systems in real time.

April 1995

DISPENSE(action) ; Instructs board to begin or end pumping of colorant
+l
+2
+3
+4
+5
+6
+7

The board's firmware recognizes $10 (10 in hex) as dispense
IF 'SDEFINE(P0RT) DO !NIT
; Initializes addresses and arguments
IF ACTI0N=l DO SETP0RT(DISPBIT)

Turn the first bit on. to begin dispense
IF ACTI0N=0 DO CLEARP0RT(DISPBIT)

Turn the first bit off, to end dispense
+8 QUIT

SETP0RT(BITS) ;Output argument to Port
+l Each of the bits represents a different command, so to change
+2 only one command at a time, it is necessary to "OR" the command
+3 with the current state of the board (stored in variable SHADOW)
+4 1111 0001 (Sample of SHADOW'S value at the time of the request)
+5 0000 0010 (Command to begin dispense - value of DISPBIT)
+6 1111 0011 (Result after "OR")
+7 SET SHAD0W=SZBIT0R(SHAD0W,BITS)
+8 DO 0UTPUT(SHAD0W,P0RT)
+9 QUIT

CLEARP0RT(BITS) ;Clear argument from Port
+l To stop the pump, it is necessary to clear the second bit,
+2 without changing any of the others. So the command 00000010 is
+3 first reversed (NOT) to 11111101 and then this is combined with
+4 the current state of the board (stored in SHADOW) using AND:
+5 1111 0011 (Sample current state in SHADOW)
+6 1111 1101 (Reverse of DISPBIT command to stop pump)
+7 1111 0001 (Result turns off the pump because only the second
+8 position from the right is changed (to zero)
+9 SET BITS=SZBITN0T(BITS)
+10 SET SHAD0W=SZBITAND(SHAD0W,BITS)
+11 DO 0UTPUT(SHAD0W,P0RT)

'.'\ +12 QUIT
0UTPUT(VAL.P0RT) ;Actually writes to the robotic board.

+l Z0UT P0RT:VAL:"B"

INIT

+2
+3
+4
+5

+l
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17

QUIT

This is the extension to MUMPS that "writes"
circuit board. The 3rd arg "B" tells Z0UT to
out a byte, instead of a 2 byte word

to the
write

;Initializes the addresses of the ports
For the sake of this paper, assume that if the second bit from
the right of the eight that make up the single byte of
the robotics board is high (1) then the board will activate the
pump and colorant will dispense. If it is low (0) then the pump
will shut off.
The address of the port (in HEX) is $286,
which is converted to decimal 646.

SET P0RT=646
SET DISPBIT=SCHAR(0) SCHAR(2)

This sets "00000010" into DISPBIT, the
value that the board recognizes as the
"start the pump" command

SET SHAD0W=SCHAR(0) SCHAR(0)
This variable keeps track of the
current binary state of the port
Initially it is "00000000"

QUIT

Figure 2. Sample (simplified) code to demonstrate the principles involved to output directly to a robotics circuit board.

As a database-management system, M can receive automated
information from external machines, or can drive other ma­
chines based on its databases, which can vary widely from
prescription data to paint formulas. The only limitations are
the current state of the hardware and the imaginations of the
people that use it.

This article has described commercial and medical robotics
projects communicating through DOS-level interrupts, di­
rectly addressing circuit boards that drive robots, and in­
terfacing with machines that can physically manage tasks.
These are only some examples of how M systems can interact
directly with the world, go beyond managing medical data,
and reach all the way into the physical world. Ila

April 1995

Max Rivers is an expert M programmer and the CEO of Rivers M Con­
sulting, which has specialized in unique, difficult or impossible M proj­
ects for more than fifteen years.

James W. Poitras is president and CEO of Highland Laboratories, Inc.,
a manufacturer of paint tinting and mixing equipment, surgical deter­
gent dispensers, and blood donor scales. Previous experience includes
sixteen years at Massachusetts General Hospital.

Pablo Halpern is the senior consultant with Halpern-Wight Software,
Inc., which provides design programming and quality assurance exper­
tise for the software industry. He has fifteen years' experience with
applications and operating systems using C+ +, C, and PASCAL.

Ila COMPUTING 13

