
CHANGES IN THE
MWORKPLACE

Changes in the World and Working
Environm.ent of the M Program.m.er

lJy Kate Schell

The world of the M programmer is changing. It is chang
ing quickly, and on multiple fronts. The past ten years
have seen serious acceleration in user sophistication

and hardware capabilities. The cost of disk space continues
to plummet, the size of personal-computer (PC) networks
continues to grow. Some hardware capabilities have brought
about new system architecture requirements. Coding for a
graphical user interface (GUI) or client-server system re
quires an isolatlon of database-access code from user-inter
face code. The M standard, which is turning into a suite of
standards, continues to evolve thanks to the work of the
MUMPS Development Committee (MDC) and contributions
from the M community. The computer industry continues to
discuss reusable code, but the favorite model is now object
oriented, not just structured. Finally, there are tools and sys
tems available to the M programmer today that were not
around ten years ago or even four years ago. These tools can
help build faster, nicer-looking systems; access data in legacy
databases; build reports that once had to be coded by a pro
grammer; or assist in the maintenance, enhancement, and
documentation of established M systems.

The Computer User
The profile of the average computer user has changed seri
ously in the past decade. Once most people accessed a main
frame or minicomputer from a terminal on their desk, or in a
central computer lab. Output went onto noisy printers loaded
with zebra paper in a remote room. Word processors were
stand-alone, dedicated machines. Spreadsheets were just be
ginning to come into use. Computer games were frowned
upon not because they wasted worker time, but because they
squandered precious CPU (central processing unit) cycles
and connect time. Computers were, for the most part, largish
machines sequestered in air-conditioned rooms. Now, most
common household appliances and motor vehicles contain
computers. Bank tellers have been replaced by computer ter
minals. Computers are used to ensure timely delivery of
pizza, as well as to help pilot space shuttles. Today many
people have personal computers on their desks at work; a sub
stantial number of those people also have computers in their

February 1995

homes. They use IBM PC clones, or Macintoshes, with mo
dems, sound blasters, CD ROM, and optical scanners. In
short, the machines have become ubiquitous.

Many computer users have taken the time to learn how to
install hardware themselves. Their children study computer
architecture in school, and spend their afternoons with a little
machine known as Sega. Today's computer users run word
processing packages, spreadsheets, database management
systems, games, and communications packages that help
them navigate the Internet, manage e-mail, send and receive
facsimiles, effect banking transactions, and submit tax re
turns. These systems come with a GUI, hypertext help, and
documentation that is colorful, well organized, nicely bound,
and professionally indexed. The typical PC software package
costs between $50 and $400 for a single user. People expect
to be able to sit down at a new application and get through it
without extensive training. The more complex systems come
with on-line tutorials built into them. The most recent user
aid is the "wizard," an interactive tool that directs a user's
work while that person does real, constructive work, such as
building a complex document.

Users of computers have become more familiar with the
capabilities of computer systems, and in the process, they
have become more demanding. Programmers are expected
to know about the aesthetics of screen layout as well as the
flawless algorithm. We are expected to guide the user of a
computer system in successful use of that system: listing only
menu choices available to the user, displaying lists of possi
bilities, or making them available through help. The "look
and feel" is supposed to be familiar, the chances of success
are supposed to be high.

The GUI has become the norm for most of the software avail
able on PCs. Vendors of systems written in M will tell you
that they have a very difficult time selling systems without
GUis, even though a GUI-based system requires a larger in
vestment in hardware. People who are computer knowledge
able look askance at "dumb" or "graphically challenged" ter
minals. They want to be able to call up their M system while
they are using a word processor or spreadsheet, and then be
able to return seamlessly to the M system; in some cases, they
want to be able to extract data from one system and paste it
into another. The progress that has been made on GUI devel
opment has been critical to continued sales of M systems.

Al COMPUTING 9

Developments in the M Standard
The M standard continues to evolve. This year a contract with
a customer who was still using M/1 l required me to go back
to coding without extrinsic functions or parameter passing. I
found that I could still do the work I needed to do, but it was
much harder than it should have been. All in all, I'm glad
that the 1990 M standard supplanted the previous standard.
There is a new M language standard currently in canvass that
will alter seriously the way in which we handle errors, re
trieve and file data, deal with character sets, and communi
cate with non-M systems. The MERGE command copies an en
tire global or global subtree, eliminating the need for those
"tree walk" subroutines we all learned to write. ssvNs (struc
tured system variables) will make more of the M system in
formation available to programmers in a standard fashion. In
addition to the language standard, we have a new suite of
proposed standards dealing with data access between M sys
tems called the Open M[UMPS] Interconnect (OMI), a plat
form-independent M Windowing Application Program Inter
face (MW API), and bindings to the Graphics Kernel System
and X. Object-oriented extensions, and new programming
and data structures, as well as new networking protocols and
revisions to the MW API, are under discussion.

Changes Due to New
Architecture Requirements
Among the largest changes taking place in the world of com
puting are those in the physical scale of systems, with atten
dant opportunities for changes in architecture. Networks of
thousands of PCs were a dream ten years ago. Today they are
a reality that has changed the focus of computing. A computer
system based upon one large computer (or two, or three, or
four of them) was relatively easy to control. A system man
ager and staff knew every piece of software on the system.
They were responsible for loading it, received a set of manu
als, sent staff members for training in the management and
usage of the system, and tightly controlled the resources allo
cated to it. "End-User Computing" departments were unnec
essary: The end users' access to computing was controlled
by the systems staff. The advent of personal computing put
an end to the despotic control wielded by the system manager.
The wars between Macintosh and PC, Word Perfect and MS
Word, Lotus 1-2-3 and Excel, and others rage at almost every
institution. No matter which software package or hardware
system is installed and licensed as being the "official" and
therefore a supported system, someone in the institution is
probably using a competitor, even though that tool is unsup
ported.

10 Al COMPUTING

On the other hand, those who are willing to use unsupported
systems often have good reason for doing so, and are familiar
enough with the requirements of their systems to be able to fix
problems on their own, or to find someone inside or outside
of the organization who will help. This independence and
willingness to employ the best tool for the job creates many
opportunities for small M systems.

The development of the PC, networks, and the client-server
systems has led to remarkable changes in system size and
cost. It is now possible to build the processing and data stor
age equivalent of an IBM 370 (one of the high-end machines
a decade ago) using a collection of inexpensive PCs. Up
grades, when necessary, can be handled piecemeal, thereby
reducing system costs, and enabling them to be budgeted
across several fiscal years.

As Dr. Frederick Hiltz pointed out in the November 1994
issue of M Computing, client-server architecture gives rise
to a modification in programming style. Routines are de
signed to run on a specific area of the system. There are server
routines that store and retrieve data, and client routines that
invoke them. The server routines are designed to return a very
specific result.

Speaking of results, the results of the migration to client
server have been multiple. The cost of system hardware has
been cut. The selection of products available to computer us
ers has expanded. The power broker in the system area is now
the network manager. The plethora of systems required to
handle a modern-day job makes it important that a user be
able to switch between systems and applications quickly. An
inquiry about a record in the database may interrupt the prepa
ration of a memo. Better yet, users would like to be able to
capture information from an application and paste it into the
memo in question. Users expect to switch into and out of M
systems as quickly and easily as they would bring up any PC
based application, such as a DB2 database.

Tools
The number of productivity tools available to M developers
continues to increase. Some of those tools are devices, such
as multisession terminals, workstations, or PCs with terminal
emulation. I know that there is still a large number of M pro
grammers working at so-called dumb terminals. lwonder if
their managers lack imagination, or if M shops are just as
"retro" as some of our programming colleagues think we are.
Poor hardware in front of an expensive resource like a pro
grammer is a really shortsighted approach to cost contain
ment. There are a number of software tools available to speed
up development. Some of these tools are purely M, others
are hybrids.

February 1995

In the area of building applications, screen and GUI genera
tors can be used to create the user interface. Case tools can
help with database modeling .. There are reporting tools that
can move report generation from a programmer to a skilled
analyst, or even out to expert end users. There are new types
of tools appearing that enable M shops to control their code
more closely.

Version control and reverse-engineering tools are among the
most recent additions to the M programmers' toolkit.
Tracking of development efforts in the past decade revealed
that programmers spend the vast majority of their time creat
ing user-interface code. Prompting for data and validating
input is one of the most labor-intensive parts of the job.
Screen generators have been around for more than a decade,
but there are a lot of shops that don't utilize a screen-building
tool. In many M shops, each programmer is allowed to create
a unique user-interface style. You can tell who programmed
a module without looking for initials in the routines. Products
fashioned this wa.y are difficult to maintain and enhance.
They can also make a user's life miserable. Consistency of
look and feel is invaluable when considering the amount of
training time and documentation saved. How many M shops
have a tool for building user interfaces, let alone a style sheet
that describes formatting of menus, screen design, help text
design, and protocols for moving forward or backward in the
application? In the GUI-1 generation area, M developers have
a choice of MW API-based tools, or interfaces to non-M prod
ucts such as Visual Basic and Power Builder.

M programmers who use the technology need to learn the
basics of GUI screen design, as well as how to link the re
sulting screens to the file servers. GUI-based input requires
an understanding of events, and has to allow the user to move
between fields in an arbitrary manner.

Validation that used to be executed at the end of entry into a
field may now have to wait until the event (such as a mouse
click on the Save option in the File menu) that signals that
the user is done entering data, and is ready to have it filed.
In many ways, this feels like a step back. We had better con
trol with "roll and scroll" because users weren't allowed to
fill in one field until the previous fields had been entered. The
linear nature of the user interaction allowed more control.

Managing data entry, in particular, in an event-driven envi
ronment requires skill and care on the part of the programmer.
CASE (computer-aided systems engineering) tools can help
with the modeling of databases. These tools allow selection
of a database description methodology, and then enforce the
rules of that methodology as a programmer or database ana
lyst/designer describes data fields and their location. They
have nice reporting features that enable production of data-

February 1995

base diagrams with graphic representations of relationships.
Even without using a relational database technology, these
tools can teach programmers the rules and vocabulary of the
relational game, and some have hierarchical models available
as well. (If you have to play on the relational field, you may
as well use those tools.)

New products are coming to market that translate a CASE
schema into a database definition usable by an M database
product. In the process of creating an application, develop
ment shops with more than one programmer eventually run
into conflicts over versions of routines. Somebody edits a
routine and files it; ten minutes later, another programmer
files the same routine, wiping out all record of the modifica
tions made by the first programmer. The more programmers
working in one area, the more likely it is that a shop will
implement some form of version control. Programmers look
on version control as handcuffs. In fact, version control is
more like a condom: What is lost in sensitivity is gained in
protection!

Some of the M tools on the market create data dictionaries
that make M globals accessible to SQL inquiries. Open Data
Base Connection (ODBC) access for reporting tools and se
lection of data from other systems is becoming a requirement
for more and more systems. Users like the ability to access
the data without programmer intervention. The down side of
providing ODBC access is controlling it. I have experienced
systems with more than fifty SQL queries running against a
poorly indexed primary data file. System performance was
poor, and nobody had a methodology (increase system size,
limit the number of ad hoc queries, etc.) for bringing the
problem under control.

The other serious issue is making sure that users understand
the implications of using software that performs SQL-style
searches on a database. M reports don't usually give
Cartesian products of fields that have nothing in common.

Some of the most intriguing tools currently available are
those that give a new perspective on existing systems. Older
systems, often called "legacy" systems, frequently suffer
from lack of documentation, both for program flow and for
the data collected and saved into globals. RE/m, a "reverse
engineering tool" for the M marketplace, visually represents
routine-calling sequences and global layouts. Item ploys a
static parse of the routine code, then stores the information
gleaned about routines and globals in a repository. It can also
produce charts indicating which routines create, update, ac
cess, or delete global data. The tool can be turned to purposes
other than the visual displays that come with the system. The
parsing engine runs off of a parsing tree stored in an M global.
Users of the system can modify the parser to collect data, or
even to rebuild code in certain ways.

M COMPUTING 11

a software training
alternative. Computer Based

Instruction is much less expensive
than course fees, and eliminates travel

time and expense. Perfect for individuals or
groups ... the more they're used, the more you save.

CBTs available on floppy disk and mdgtape:
■ Introduction to M ■ Object-Oriented Concepts
■ Intermediate M Programming ■ DSM System Management
■ Advanced M Programming ■ VMS Concepts
■ Introduction to File Manager ■ DCL Programming
■ Intermediate File Manager ■ MSM System Management
■ Advanced File Manager ■ DataTree M System Mgmt.
■ KB_SQL ■ M/SQL

I ..1JEJ"l MWAPI CBI NOW AVAILABLE! I
All trademarks are the property of the respective owners.

II Call ESifor more Details!
5 Commonwealth Road • Natick, MA 01760
Tel: (508) 651-1400 • Fax: (508) 651-0708

JIHIKI

Our MEdit™ full-screen routine editor and customizable
MShell™ toolkit will cut your development time, and make
multi-platform development a snap!
We also offer expert consulting services for system
management, custom software; health care, and much more!

Cal I 1-800-370-1935

•

McIntyre Consulting, Inc.
336 Baker Ave., Concord, MA 01742
(508) 371-1935 Fax: (508) 369-6693

Email: msm@mcinc.com

12 M COMPUTING

Another reverse engineering tool, RE/data, enables creation
of a data dictionary for M systems that haven't ever had a
data dictionary. This approach to older M systems can help
the SQL access that is in demand today. A parser similar to
the one used by RE/m examines code and identifies data ele
ments. Identification is based upon the creation and updating
of data in globals, and on data manipulation within the sys
tem. For example; RE/data will identify the year digits from
a date as a separate data element if the year is manipulated
or displayed as a unique element. It can isolate data that is
manipulated using, for example, a $EXTRACT on a piece from
a particular global node. Once the parsing is done, the results
of the parse can be compared with existing information on
database contents for verification.

Summary
Undertaking an overview of the challenges facing the M mar
ketplace, and a quick look at some of the new tools and tech
niques available for handling these challenges, strikes me as
a classic exercise in dragon-slaying. Most M shops use pri
marily the tools that they have developed in house. Tools
vendors tell me that creating tools for the M marketplace
hasn't been a financially rewarding experience. M program
mers may see the value of productivity tools, but are unable
to persuade managers to acquire them. For managers in shops
without productivity tools: You are missing out on a chance
to have systems that are more useful and acceptable to your
users. You are also missing out on a major drlhv for new staff.
Talented programmers select positions in which they will
learn and grow. Offering the opportunity to learn new skills
that enhance their productivity will bring in the type of moti
vated people who make new systems happen more quickly.
If you're a programmer in a shop that could use some new
tools, consider taking the initiative. You will be more mar
ketable with current skills. Get out and take a course on your
own. The MT A tutorials are a good buy. Colleges and univer
sities have courses in design that will help you understand
the issues behind GUI development.

This article is not intended to create a market for tools. This
article was conceived as a quick summary about working
smart, as well as working hard. M

Kate Schell is the founder of C Schell Systems, an M consulting finn
in the Boston area. She chairs a subcommittee of the MUMPS Develop
ment Committee and is on the Review Board of M Computing. Here
mail address is cschell@world.std.com.

February 1995

