
INTERFACING M

Where Is the M in POSIX?

by Chris Richardson

POSIX API Efforts
In the efforts to define standards for programming languages,
operating environments have been allowed to remain proprie­
tary. The POSIX (Portable Operating System Interface) stan­
dard attempts to standardize the operating-system environ­
ment. POSIX is derived from the common portions of the
dialects of UNIX by the Technical Committee on Operating
Systems and Application Environments of the IEEE Com­
puter Society. Frequently, an application needs to request the
operating system to perform system services. To ease the in­
terface between different programming languages and the op­
erating system, a series of subroutine and function calls needs
to be defined. These calls are referred to collectively as an
Application Program Interface (API).

The MUMPS Development Committee (MDC) is acting as a
consultant to the IEEE Computer Society, which is working
toward a standard for the POSIX M[UMPS] APL This article
briefly describes many features that MUMPS programmers
can look forward to when this particular standard is approved.

Most POSIX APis (FORTRAN, COBOL, and Ada) are de­
rived from a series of calls derived from the POSIX C APL
The calls are modified as little as possible to enable easy im­
plementation by the vendors. The POSIX M[UMPS] API
specifies a series of calls that are derived from the same
POSIX C functions.

M, in some older implementations, was not only the language
but also the operating system. It already provides many of the
system services to the application environment just as many
other operating systems. A portion of the functionality re­
quested to comply with the POSIX standard is already
ensconced in the M language. This is both a blessing and a
curse. There are additional functionalities that have no cur­
rent analog in the M language (or in some of the other lan­
guage APis). These API functionality topics are described
briefly in this article.

Issues and Services
Producing a POSIX M[UMPS] API encompasses a variety
of issues, which need to be addressed. While many of these
issues are services, they are still issues with implementing a

28 M COMPUTING

POSIX APL Some issues, such as data structures, are diffi­
cult for other environments (FORTRAN and COBOL) to
apply in a standard way; the M environment has less of a
problem. The issue becomes one of mapping the dynamics
of an M data structure to the more static C structures to pro­
vide the services described.

Data Typing Definitions
and Conventions
Many of the definitions and mechanisms are applicable to the
POSIX M[UMPS] APL The major difference is found in the
definition of data types. While languages with defined APis
(C, Ada, andFORTRAN)orinreview(COBOLandModula-
2) do have data types, M only has the single data type, strings,
and extremely dynamic memory allocation. The calling inter­
faces of the POSIX functions involve the passing of data via
arguments. The C functions require different variable types,
integers, characters, pointers, and floating-point scalars and
arrays of various magnitudes (8-, 16-, 32-, or 64-bit sizes) as
well as C structures. Different platforms conform to either big
endian or small endian (byte order of the word) constraints.
These constraints are not a problem within the M environ­
ment. The standard M code will seldom have a problem with
these constraints. The conversion of arguments and con­
straints is defined within the POSIX M[UMPS] APL This ex­
ternal API library is available to the M application, and maps
the values to the external data type and arrangement of the
arguments.

Conformance Requirements
The conformance of an implementation to the API standards,
as identified by the first POSIX C API, should make a state­
ment to describe the deviations. The M[UMPS] API will have
a few of these deviations because of the M operational envi­
ronment, which identifies only a single data type, strings.
The POSIX M[UMPS] API defines the conversion of the M
string value-to the more platform-specific representation re­
quired by the POSIX side of the interface. As mentioned, the
word size, endian configuration issue is a difficult barrier to
general portability. Applications in compiled languages need
to be recompiled in order to run in a new environment.

Mapping Rules
The mapping issues involve the naming conventions as speci­
fied by the POSIX C API. The POSIX M[UMPS] API defines

February 1995

the conversions that the calls will make to the external envi­
ronment. Once these interfaces are well defined in the POSIX
M[UMPS] API, the M implementor's job becomes easier to
provide the POSIX library or POSIX library's conformance.
On different platforms the word sizes differ: An integer or
floating-point word can be 16 to 64 bits, depending on the
system. In M, the size is never defined and is converted to
that size required by the underlying POSIX M[UMPS] APL
The M applications developer can still build platform-trans­
portable code.

Configuration Services
Essential to a flexible operating environment is run-time
knowledge of the operational environment in which an appli­
cation runs. The more information an application "knows"
about its environment, the better it can react to the situation
within the system. Furthermore, self-awareness enhances
fault tolerance and improves applications that can adapt to the
current state o.(the environment in which they are working.

Process-Related Services
The M environment has performed well in this set of services.
The $JOB identifier is specific to the M process, but may not
be the same identifier that the operating system assigns.
These services provide the process identification, as well as
the user and parent-process identifiers. The system name and
the concept of a group identifier are introduced along with
environment variables, terminal identifiers, and configurable
system variables.

Timing Services
One characteristic of a POSIX system is the ability to respond
to real-time activities. M systems have not been used in this
capacity because of the inherent database-centered applica­
tions environment.Mis usually more concerned with mediat­
ing access to data than with waiting for asynchronous external
activity. With the POSIX M[UMPS] API, it will become eas­
ier for applications to provide many of these external activity­
monitoring services without impacting the database envi­
ronment.

Directory Services
What files are currently available? How big are they? Where
is a specific file and in what directory? Some M environments
have had these directory services in one form or another. This
has meant that applications need to be tuned to the particular
environment to access the information in the same manner in
which a particular vendor provides it. The POSIX M[UMPS]
API will make that interface much easier to generalize and
implement these types of services.

February 1995

File Services

One challenge of most M systems has been the availability
of a set of consistent sequential file services. Some older M
systems provided a reserve area or tape for the generation of
spooled reports or transport. This new interface provides the
capability consistently to create, read, write, spool, submit,
or delete files in a more transportable fashion.

Input-Output Services

The ability to read and write information with files and pro­
cesses is critical to most data-processing operations. The
POSIX M[UMPS] API provides a standardized method of
performing interprocess channel creation (pipes), file open­
ing and closing, file input, output, and file positioning.

Synchronization Services

Traditionally, complex M applications have employed a
number of mechanisms to synchronize the operations of sepa­
rate applications. These mechanisms include locks, globals,
and file or device availability. The POSIX synchronization
will enable M applications to be synchronized with other lan­
guage applications. It should be possible to provide external
synchronization for other language applications to call into
M applications and return data in a near real-time manner.

Shared Memory and Message Services

Physical memory allocation issues have been avoided by the
M community. All POSIX language APis provide some form
of shared memory and message services. This is a character­
istic that enables the user to lock and unlock memory, and
communicate via this shared memory with other entities.
This is valuable for real-time operation, object-oriented pro­
cesses, messaging, and message queuing.

Scheduler Services

Process scheduling has been implemented by many M appli­
cations. File Manager uses Task Manager to perform these
background tasks. The ability to establish scheduled services
with the surrounding operating system enables reaching be­
yond the M environment and thus carrying out additional
services. An M environment actually may set up a backup
procedure that shuts down the M environment, performs the
backup, and then restarts the M environment without opera­
tor intervention.

continued on page 31

., COMPUTING 29

Sentient Systems, In tablished in 1981, delivers high-quality technical
solutions for healthcar rnment, and commercial systems nationwide.
Sentient programmers~ ,,,/::/:) e today's business problems, with services,
such as application de 4:11' opment, systems integration, rightsizing,

s;;;:;:;:es~°::~::,n:; aa,;gement~d :::,;:a;°.m:/:;,1{; :fee~::
:;s :;;e~°t,;;!:u;~;:ss :::;:::1,;!!i!,~jli!iJiJ!::; ino~:~eB:~t~::,:~~:;:n;;~:

metropolitan area, Se of choice for more than 500
clients including the SmithKline Beecham Clinical
Laboratories, Kaiser P-'D7n ley Investment Bank, Johns

Hopkins Hospital, an r.Tnmn ~~"'i''~""~'"'"':,,,"" Affairs.

'Attn: Debra Hankish
-,, WHitu410 N. Kensington Parkway

.ensington, MD 20895

continued from page 29

Execution Thread Seroices

The set of execution services makes it possible to extend task­
forking beyond the M environment. Rather than just JOB bing
off other M applications, M applications could initiate other
language processes to perform specific tasks separate from
the current task.

Security Seroices
The POSIX environment provides Access Control Lists
(ACL) to ensure system security. The ACLs offer a level of
service access-security and come in two components: one is
the list of identities of accessors to the system (individual
user, user group, other networked systems, and so on) and
the second is what types of access are allowed (read, write,
query, execution), that will be applied to a file entry (permit­
ted actions). Additional security services are usually pro­
vided by other means outside the operating system, such as
network firewalls and gateways.

Database
Most languages have this section in their APis, but few have
much to say concerning their database interface. M has a da­
tabase intrinsic to the language. The M definition for this sec­
tion will be a strong bridge for the interoperability between
other database systems. M

February 1995

R. Chris Richardson is a software engineer with Science Applications
International Corp. in San Diego, California. He heads MDC's task
group on data structures. In addition, he wrote for MUG Quarterly (a
forerunner of M Computing) on the hypertext model and on vector im­
plementation within the MUMPS environment.

Endnotes
The reader may want to refer to the following selected stan­
dards and technical materials for a more detailed understand­
ing of the material presented in this article.

IOS/IEC 9945-1:1990 (E) - Information Technology - Portable Op­
erating System Interface (POSIX) - Part 1: System Application Program
Interface (API) [C Language].

IEEE Std. 1003.9-1992 - POSIX FORTRAN 77 Language Interfaces,
Part 1: Binding for System Application Program Interface [API].

ISO/IET JTCI/SC22 - Working Draft on: Information Technology -
Programming Languages - Modula-2 Binding to POSIX.

British Standard Implementation of ISO/IEC DIS 14519-1 -Informa­
tion Technology - POSIX Ada Language Interfaces - Part 1: Binding
for System Application Program Interface (API).

ISO 7 498-2, Information Processing Systems - Open Systems Intercon­
nection - Basic Reference Model.

M COMPUTING 31

