
CHANGES IN THE
MWORKPLACE

A Basic Introduction to 00 Concepts

by Rodney Anderson

Object-oriented programming (OOP) is a powerful
methodology to improve the processes of design, de
velopment, and maintenance of application software.

Object-oriented computer languages such as Smalltalk and
C+ + are used to implement and develop software applica
tions using the object-oriented paradigm.

This article describes just what the object-oriented paradigm
is, and uses simple ideas to introduce the concepts of object
oriented programming. These concepts are sometimes diffi
cult to grasp but with perseverance and determination the 00
paradigm is understandable and usable. Once a programmer
understands 00, there are many worthwhile and rewarding
programming discoveries to make. If you are a beginner ap
proaching this subject, read the range of literature available
on it. Every article will add a new piece of information to the
jigsaw puzzle of understanding 00.

This is intended to introduce you to the main concepts of 00
and highlight the benefits of it. Future articles will examine
how OOP relates to MW API (M Windowing Application
Program Interface), to M database techniques, and how OOP
can produce a better M development environment.

Introduction
Many people describe the 00 paradigm simply as a sophisti
cated modular library system, but it is much more than that.
(M could be described as nothing but a sophisticated text
manipulative language, but it is much more than that.) Just
as we may describe the $ORDER and $QUERY functions as being
among the most powerful features of M, similarly, the fea
tures of OOP have distinct advantages over regular library
systems and traditional programming styles.

A good way to approach OOP is to forget all of the computer
programming languages that you know already. Try, instead,
to think of everything in the world as a thing or an object.
For example, a desk is an object, as is a car, pen, and so on.
Often it is easier and quicker for people without computer
experience to grasp the concept of OOP than for those who
have been programming for many years. To learn about
OOP, the best approach is one without preconceived comput
ing ideas.

20 Al COMPUTING

For my purposes, I will stay away from thinking in computer
code or computer languages. Rather, I will describe the OOP
in the abstract and consider concepts and ideas in an abstract
way, too.

The Principal Concepts
First are the objects. An object can be anything that is visible
or tangible or anything that may be perceived intellectually.
A knife is a visible, tangible object; somebody's favorite
color is an object that is perceived intellectually. Specific ob
jects are referred to as instances. For example, a specific writ
ing desk is an instance, while the color of Fred's hair is an
instance of an intangible object.

If many instances can be grouped together in similar types,
then this grouping is called a class. John's video, Julie's
video, and Tom's video are all instances of the class video.
A class identifies the classification of instances and defines
what these instances will look like and how they will behave.
In OOP, instances and classes are structures within the mem
ory of the computer.

Messaging and Methods
Messaging is the act of sending messages to objects. Usually
the message is requesting the object to do something. The
request might be to obtain data or to update data. An object
can respond to a message by executing some computer code.
Any computer code executed is commonly referred to as a
method.

Messaging is not concerned with what the instances are do
ing. Sending a message to an instance does not control how
the instance responds, nor what the instance does, or even if
the instance simply ignores the message. For example, if you
have three instances, such as myCar, hisBulldozer, and her
Train, then myCar has a steering wheel to control direction,
hisBulldozer has levers to control direction, and herTrain fol
lows the railway tracks. If I send the message "tum left" to
each instance, what happens? The instance myCar can per
form a method "tum left" and will probably tum the steering
wheel to the left. Likewise, hisBulldozer will execute a
method "tum left," which will pull a lever (causing the bull
dozer to tum). Both of these are different from herTrain,
which cannot tum left (or perhaps has no "tum left" method
defined) and so will ignore the message.

February 1995

Polymorphism
The above example about myCar, hisBulldozer, and her
Train also illustrates the concept of polymorphism. Polymor
phism means that a method of an instance can be different
from a method of the same name in another instance. That
is, one instance may respond to a message differently than
another, even if the instances are of the same type. The mes
sage is the same but the contents of the method (the code)
executed may be different. As in the example, the instances
respond differently even though they are all one type of
vehicle.

Messaging and polymorphism are extremely powerful be
cause they modularize the functionality of the system. A mes
sage can say to an instance, "This is the message, I do not
care what you do or how you do it, just do it." This also
leads to the ability to maintain an 00 system easily, because
methods are small, debugged procedures that are reusable.
To add another,.j.pstance to the system, I simply define the
instance, then define how the instance will respond to the
messages that will be sent to it.

This can be illustrated with the above example of three in
stances of myCar, hisBulldozer, and herTrain. If I want to
add a new instance called yourAirplane to the class of vehi
cles, I simply define yourAirplane and tell it how to respond
to messages. For the "turn left" message, I would describe
how yourAirplane could tum itself left, and yourAirplane
could then be used in part of the 00 system. The 00 system
would begin to send yourAirplane messages and yourAir
plane would respond appropriately.

Encapsulation
Encapsulation describes the accessibility of the information
within the instance. An instance encapsulates all the methods
and data variables within itself. This is one of the more impor
tant distinctions between 00P and traditional procedural pro
gramming using sophisticated modular library systems. An
instance is an independent item that, in a sense, has a "life
of its own," separate from other instances in the environment
in which it lives. Access to the data of the instance is permit
ted only by the methods of the instance.

An instance contains all that is needed to make it function
and carry out its tasks. This includes procedures needed to
respond to incoming messages. The attributes and data that
describe the instance are referenced by these methods.

In traditional programming, procedures are merely sets of
instructions, possibly with their own local data, which were
created for convenience and reuse. The procedures are com-

February 1995

bined or split, depending on the programmer's personal pref
erence. In 00 P, an instance is insulated from the rest of the
world. Since the instance executes only internal procedures
and uses information about itself, information contained
within it, or parameters passed to it, it is much easier to track
down problems and less likely that a bug in one instance will
affect some other part of the system in an apparently uncon
nected way.

When an 00P system is running live, the data in the object
will not change between one use of the instance and the next,
unless a method or message is received to change it. Instances
can remember data values since variables are not initialized
automatically. An object's internal variables are often re
ferred to as properties, attributes, or instance variables.
These terms are often mixed up. It's important to note that
in 00P, messaging is the only way to get the value of the
property of an instance. Access to the attributes of an instance
is made only by sending messages to the instance.

An instance can be said to have a state. The state of an in
stance is important and consists of the current values of its
variables. That is, the instance's information about itself
makes up the state of the instance.

Classes and Instances
A class is a template for an instance. A class defines how an
instance will look and behave.

The instances hisBulldozer, herTrain, and yourAirplane
clearly are instances, but where do they come from? It is pos
sible to create all these instances individually. Begin with
nothing and uniquely create each object, but this is not always
practical. What we need is afactory that defines how the in
stance will look and behave, and when requested will pro
duce a new instance of the item. This factory is called a class.

We need a Car class to produce cars. The Car class defines
how the car looks and behaves. When requested, the Car class
can produce a new instance of a car. Similarly, we need a
Truck class to produce trailer trucks. The Truck class defines
how the truck looks and how it behaves. When requested the
Truck class can produce a new instance of a truck.

Base classes usually are predefined and supplied in 00P
languages. New classes, however, may be required and cre
ated.· A class also has the following functionality:

• Classes group similar instances together into a classifica
tion. That is, a group of cars could belong to the Car class.

Al COMPUTING 21

• Classes are used to produce new objects. Similar to a fac
tory, a class called Ford Cars not only classifies and de
scribes Ford cars, but can produce a new fordcar instance.

An instance is a unique object with a unique identifier with
characteristics described by the class. Obviously, a class may
produce many instances. An instance is created when a class
receives the message NEW. The class will produce the new
instance, initiate the properties and methods of the instance
and return the identifier of the instance. Instances have a de
fined lifetime and can be easily created and destroyed.

Another way to consider classes is to think of them as facto
ries. If you send a message NEW to the factory then it pro
duces a new instance of the class. If the factory described and
manufactured cars, then when the factory (class) received a
NEW message, it would produce (create) a new instance of
a car and give the location of the new car.

The name of the factory could be Car while the instance of
the new car could be identified as myCar. Many 00 systems
and many OOP books distinguish between a class and an in
stance by using an uppercase letter for a class (Car) and a
lowercase letter for an instance (newCar).

Inheritance
Inheritance is another extremely powerful concept of OOP.
As the name suggests, an instance may be a child of another
instance and have the same properties as the parent instance.
This occurs in the same way a human child may inherit the
same eye color from its father. A child may inherit its eye
color from its parent, which means that the child could have
the same eye color as the parent. But the actual eye color may
be different from the parent. It can be said, then, that the eye
color property is always inherited (meaning that all children
have colored eyes) but the actual value may be inherited (the
same as the parent) or not inherited (different from the par
ent). For example, myCar, hisTruck, and herBus have prop
erties. Some of them are common to all three instances and
some are not. They all have an engine, a driver seat, and
wheels as common properties, yet they usually have different
vehicle bodies (uncommon property).

So we could create a class of these instances called vehicle
and describe the common properties of the instances here.
The vehicle class would be the parent of the three instances.
That is, the vehicle class describes the engine, the driver seat,
and the wheels. The instance would inherit these properties
from the vehicle common parent class. This is also called a
base class. The body of each instance, however, would be
unique and would be described in each instance.

22 /I COMPUTING

The instance myCar would have a car body; hisTruck would
have a flatbed (to carry large loads), and herBus would have
many passenger seats in its body.

Methods also could be common to the instances and usually
inherited from the base class. For example, our three in
stances would have different "tum left" methods but possibly
the same "go forward" method. Properties also can be inher
ited from the base class and become the default properties of
the child instance.

Since an instance can inherit properties and methods from its
parent class, we need to qualify our encapsulation concept.
An instance contains at run-time all that is needed to make it
function and carry out its tasks. OOP languages implement
late binding of inherited methods and pro]?erties to the in
stance. In OOP, this late binding occurs at run-time.

Class Hierarchy
Object-orientation always starts with one basic class. We can
call this class OBJECT. The next stage in building a class
hierarchy is to define a new class, called a derived class,
which is a child of the base class. The derived class will be
a child of the base class and inherit the methods and properties
of the parent class. The properties and methods are usually
not copied to the derived class but stored in the base class.
The derived class may include additional methods and prop
erties that did not exist in the base class; it also may redefine
methods (or even scrap them altogether). It'hlso may assign
new values to properties, which are then stored at the derived
class. A derived class may disinherit properties or methods
and therefore have fewer characteristics than its base class.

Life in OOP is simple, since a derived class does not have to
redefine all the methods or properties in the base class. In
stead, when a programmer declares that a new class is derived
from a base class, only those properties and methods that are
new or changed require definition. All other properties and
methods from the base class are assumed to be inherited by
the derived class as well. This has the great advantage that
when a property or method is altered in a base class, the same
change automatically applies to all derived classes (unless
the property or method is redefined in a derived class).

The process of inheritance can (and usually will) continue
over a series of classes. A class that is derived from a base
class can itself become the base class for other derived
classes. In this way, object-oriented programs build up a
class hierarchy. It is important to note that a class hierarchy
cannot be circular. This means that a class cannot become a
parent to one of its ancestors.

February 1995

·•

The terminology I have used was chosen carefully to avoid
confusion. Since the word object is generic and ambiguous,
I have avoided using this word whenever possible. Two types
of objects, however, have been identified and labelled. The
first type of object is an instance object, which is a specific
instance of a class and uses a lower-case letter, e.g., ford car.

Summary
The initial concepts of the OOP have been presented here in
simple terms. These concepts include:

• The behavior of an object is determined by its class. A class
is a template for objects, each new object being an instance
of the class.

• Instances from different classes may have methods with the
same names, but these methods may respond in different
ways. This is polymorphism.

• An instance encapsulates all the methods (procedures and
functions) arid' data needed for it to operate correctly. The
instance usually operates through the public methods it in
herits from its class. The values of the instance variables
determines its state.

• New classes are derived from base classes. Each derived
class can be the base class for other classes. The result is a
class hierarchy.

• A class inherits the methods of its base class. This base
class, in tum, inherits methods from its base class. (This
means that a class inherits methods from all classes above it
in the hierarchy.) A class can add new methods or override
those of the ba.se class by redefining them. Circular hierar
chy is not allowed.

OOP has many features that make it perfect to add to the
M programming development environment. Employing the
OOP approach with other programming techniques (Case
tools, SQL, and so forth) makes application development
easier and faster. Al

Rodney Anderson is Australian and has worked with M since 1980. He
worked in the UK and Germany with Micronetics Design Corp. during
1992 and 1993 on graphical user interface. Since then, he has been
developing MWAPI 00 tools. Write to him at P.O. Box 1633, Mac
quarie Centre, NSW 2113, Australia, or fax him at 61-49-527878.

February 1995

MIISTM

POLVLOGICS

MUMPS

We turn running MIIS programs into running
MUMPS programs. Efficiently, with maximum
accuracy and minimum down-time.

MIIS in, MUMPS out. That's all there is to it.

We specialize in MUMPS language conver
sions. We also convert MAXI MUMPS, old
MIIS, BASIC and almost anything else into
standard MUMPS. Polylogics will be there with
experienced project management, training
and documentation.

So, give us a call today. Ask for a free demon
stration on a few of your programs. That's all
there is to it.

POLYLOGICS CONSULTING
136 Essex Street
Hackensack, New Jersey 07601

Phone (201) 489-4200
Fax (201) 489-4340

MIIS is a trademartc of Medical Information Technology. Inc.

Al COMPUTING 23

