
MANAGEMENT
TECHNIQUES

A Managetnent Overview of
Software Metrics and Quality

by Susan H. Johnston and Frederick G. Kohun

Note: This article is offered as a topic of general interest for
M Computing readers. -Editors

Abstract
An important issue within the M community has been how
to convince potential clients of M's performance and produc­
tivity benefits. Relevant software measurements or metrics
focusing on quality and/or productivity can facilitate and help
to quantify objectively the advantages of M. Aligning a qual­
ity metrics program to support the overall business mission
may strengthen not only the information systems aspect of
an organization, but also the overall business by focusing its
resources. This article gives a brief overview of quality is­
sues, metrics initiatives, management issues, various models
of software metric quality initiatives, and types of metrics
potentially applicable to an M development environment. A
management perspective is the context with the important ca­
veat that metrics initiatives are situation-dependent (i.e.,
project, application, department, organization) and manage­
ment-driven, and are, for the most part, idiosyncratic and
nontransferable. The better a manager knows what needs to
be measured, the more effective the metrics are as a tool.

Introduction
M represents a development environment that includes a pro­
gramming language, a job control language, and a database
access and management system. Although M demonstrates
broadly applicable productivity advantages over other devel­
opment tools, its initial market was primarily in the health­
care environment. A software metrics and quality initiative
can be a way of improving the M software development pro­
cess within an organization. The quantitative results of such
an initiative can be a significant factor in marketing M to po­
tential clients outside of health care by emphasizing the qual­
ity of M software. There is evidence that using M allows a
firm to serve greater numbers of clients with fewer employ­
ees. [1] Given this productivity advantage, a quality initiative
with supportive metrics would be an effective marketing tool.

38 /I COMPUTING

An example of a particular type of metric is the measure of
defects per thousand lines of code (KLOC). The U.S. pro­
ductivity quality measurement is four defects per KLOC ver­
sus Japan's and the U.K. 's defect rate of two defects per
KLOC. Additionally, U.S. organizations rate lower in readi­
ness to assimilate and use new technology. [2] With an in­
creasingly globalized economy, U.S. software organizations
could use these metrics to consider the impact of the potential
entry of other developing countries into the software market­
place. Current economic, political, and technological factors
within developing nations and formerly communist countries
increase the potential for improved competitiveness or col­
laboration. [3,4]

A metrics program could be useful in organizations devel­
oping software to sell or to use in-house, or purchasing off­
the-shelf software with little or no customization. The type
of software-measurement system implemented depends on
the type of business: Select a system that supports the overall
business by providing measures that indicate business value.

Quality Issues
\;.:

Of prime importance to an organization and its customers is
the quality of its products or services and how these adhere to
specifications, established performance criteria, or customer
requirements. Measuring quality must include customer per­
ceptions and expectations regarding product performance,
i.e., the life of the product and the functions it performs ver­
sus the expected performance.

Quality performance is the interaction of the quality of the
design, the quality of conformance to the design, and preven­
tion measures against defects (faults or failures).[5] The per­
formance standard for quality is zero defects and the actual
measurement of quality is the price of nonconformance to the
quality design.[6]

An organization's quality costs are actually performance
measurements or metrics of the degree of excellence with
which the organization produces its products or services.
Quality costs are the cost of the performance needed to
achieve excellence, which is to meet or exceed specifications
or standards set by the firm or by the customers.

November 1994

In order to facilitate quality improvements with metrics, an
organization should develop a quality policy and widely pub­
licize this policy throughout the organization. If economi­
cally feasible, a team devoted to quality improvement should
be formed with employees from all departments. This team
can educate employees about quality issues and instituting
quality metrics. That each employee accepts the importance
of individual contributions to a quality program is essential
to a successful program. All these actions combined will pro­
:duce continuous quality improvement.

Metrics Initiative
The objective of a software metrics quality initiative is to
measure both software process and products while supporting
the goals, mission, and objectives of the organization itself.
This can be accomplished by starting with a business model
and identifying software measurements that can be used
within or in support of business measurements to support
overall business.goals.

A business model is needed that combines financial and nonfi­
nancial performance measurements, so that costs of quality can
be included in reports to management. Performance and ac­
countability for results must be measured within the model. [7]
The model could start with the formal organization chart but
decision making does not always follow the formal organization
chart. The information systems staff should be able to suggest
where systems can support the decision-making process, such
as determining what types of measurements are needed and how
to measure for software quality and overall organizational qual­
ity. Regular assessments of measured results will ensure the use­
fulness and relevance of the measurements.

A limitation of traditional accounting indicators is the delay
in what they report. Traditional accounting measures are the
result of decisions or the consequences of them. They are
financial measurements which provide some guidance for the
future, but do not indicate the next steps to be taken. Perfor­
mance metrics, however, can be used to support quality, cus­
tomer satisfaction, and innovation. [8] Software metrics help
to pinpoint areas of the software process or software products
that may need improvement.

Roles of Management and Employees
One essential element in the success of any software-mea­
surement program is the commitment of top management,

· which should be communicated to employees both formally
and informally. But quality should also become part of the
information systems department culture to the point that it
fosters employee suggestions for innovations. Management
support and employee involvement (especially in creating the
measurement program) are both critical success factors.

November 1994

Cost/Benefit and User Satisfaction
What is the cost of the software quality-measurement process
versus the benefits? The time invested in measuring for de­
fects (software metrics) must be compared against the bene­
fits derived from identifying and correcting the defects. One
organization reduced its bidding rate 40 percent over ten
years by instituting a software quality and productivity pro­
gram. Obviously some measurements can be used to support
the short-term goals of an organization, but as this example
shows, improvement may be a long-term iterative process in
which measurements will be initially defined and then rede­
fined. Although a base set of measurements can be instituted,
most organizations will develop unique metrics for their par­
ticular purposes.

There are also quality issues of user satisfaction. Most orga­
nizations have internal and external users or customers. User­
satisfaction surveys traditionally focus on external users, but
internal customers must also be considered when using met­
rics; if internal users' needs are met, an organization can bet­
ter serve its external users. Can the software or system be
considered a success if neither are satisfied?

When measuring cost against benefits and user satisfaction,
efficiency, cycle time, and defects are important factors.[9]
Questions to consider include: How active is the organiza­
tion's quality assurance group? How efficient is the organiza­
tion at defect removal? Common sense will dictate the best
approach for addressing quality issues, especially in small
organizations that might not have the staff or resources for a
separate quality assurance group.

Benchmarks
Benchmarks help evaluate such factors as the length of time
between software quality improvement and increased cus­
tomer satisfaction, and the balance among cost of quality,
customer satisfaction, and profitability. A baseline bench­
mark can be performed on the current state of the software
development process, including the traditional quality-report
elements of prevention, appraisal, internal failure and exter­
nal failure.[10] Continual improvements in quality activities
for the software process can. be measured against this
baseline. [1 1]

Prevention costs involve quality training, software reliability
engineering, and prototype or pilot studies, and focus on sys­
tem analysis, design, and development. Appraisal costs in­
volve inspections and testing, especially reliability testing
and defect measurements. Internal failure costs-those oc­
curring prior to product distribution-involve rework, re­
pair, and possibly cancellation of a project. External failure
costs -those occurring after product distribution~involve

M COMPUTING 39

customer complaints and dissatisfaction, repairs or replace­
ment of software, and possible warranty costs. All of these
costs should be included in a cost-of-quality report.[12]

Various issues and questions should be considered during the
benchmark. Is there a system in place for defect-tracking or a
quality-tracking system? Is the system manual or automated?
Identification of where the error or defect was introduced
within the systems development life cycle and where it was
detected should be the type of functionality included in the
defect tracking system.[13] The quality tracking system
should include the length of time needed to resolve the defect
or error. Identifying the applications with the greatest number
of problems should be a priority. Cost issues per defect
should be considered, if they can be identified. What types of
inspections or walkthroughs are conducted? How is current
software scored or measured? Scoring the programs that are
taken out of production and not placing them back into pro­
duction unless they meet or exceed the already achieved score
would tend to significantly reduce the bugs introduced during
maintenance procedures. [14] ,

Understanding the internal processes of an organization is
key to ensuring that the tools implementing the metrics will
conform to the process and report results accurately. A met­
rics baseline should include process modeling-modeling
tasks, relationships, and tools used for current processes
within an organization. A generic process model can be de­
veloped and "tuned" for specific projects within an organiza­
tion. [15] Metrics can track a project at all stages, from the
requirements phase through the analysis, design, coding,
testing, and maintenance phases.

Metrics Examples
Two examples of metrics models are the Software Engi­
neering Institute's Capabilities Maturity Model (CMM) and
the U.S. Department of Defense's Software Readiness
Growth Model (DSRGM). The CMM defines five levels of
organizational software-process maturity: initial, repeatable,
defined, managed, and optimizing. Companies that focus
more on front-end activities such as design and analysis, and
also on testing, rate higher in maturity ratings. The DSRGM
is a methodology for measuring risk associated with software
acquisition. While the CMM evaluates an organization's ma­
turity in the software-development process, the DSRGM
measures the development process and the products of that
process. The DSRGM is domain-independent and can be
used in both the private and public sectors. [16] An organiza­
tion can tailor the DSRGM to its particular circumstances,
creating specific and therefore more productive measure­
ments.

40 • COMPUTING

Continuous Process
A measurement system can identify problems as well as suc­
cess factors within system applications. It can be the basis
for a continuous improvement process with unique methods
for developing and maintaining software. [17] Objectives
should be set, analyzed, and refined until a workable set of
process objectives is obtained for the organization, an ongo­
ing process. In the long term, productivity as well as quality
should increase, software costs should decrease, and im­
provements in scheduled software deliveries should be noted.

Just as business issues evolve over time, so should software
metrics be adapted to support the strategic issues of an organi­
zation. There are many stories about reports that are gener­
ated for years without ever being used. Metrics should be
monitored to ensure that they are being used and, even more
importantly, that they are actually measuring and reporting
as intended.

Types of Metrics
Numerous types of metrics are currently in use throughout
the world, each with a unique application. Settling upon a
particular metric should take into account the differences be­
tween metrics for established software and start-up software,
especially if a new language ornew paradigm, such as object­
oriented, is used. The M language, for example, has some
unique properties such as abbreviated c12.,mmands and the in­
direction operator which can affect metrics.[18]

Following are examples of types of metrics that an organiza­
tion might consider when developing a software quality ini­
tiative:

Metrics targeted toward defects:

• Number of defects per program or module;

• Frequency of occurrence of defects;

• Origin of defects (stage of development process);

• Reason for defects-not to place blame, but to correct the
cause;

• Type of defects (accumulated also);

• Defects requiring rewrites; and

• Severity of defects and effects on customer (internal or ex­
ternal).

Metrics targeted toward time or usage:

• Actual performance compared with estimated perfor­
mance;

November 1994

• Schedule adherence;

• Required time to fix defects (turnaround time);

• Actual cost of defects-should trace ripple effect through-
out organization in order to accumulate total cost of defects;

• Resource utilization to fix defects; and

• Effort metrics-labor time.

For reliability:

• Mean time to failure;

• Target modules with defect count or density;

• Target code that has been tested;

• Number of modifications to modules;

• Assess complexity of modules; and

• Operational profiles (usage pattern of software which can
affect reliabilityf [19]

For productivity:

• Lines of code (if comparing-language used should be the
same); and

• Function points.[20]

For reuse:

• Reuse metrics measure the amount of code within a system
that has been reused from another application or a reuse
library. Because reuse of existing code can significantly
reduce the amount of coding necessary for an application,
reuse should be a requirement rather than an option.

For customer satisfaction:

• Use of surveys for both external and internal customers;

• Customer defect reports (target code); and

• Assess defect type.

Management Issues
Software problems such as the failure to meet deadlines or
large defect numbers are sometimes viewed as management
problems.[21] To improve a software-development process,
measurements of the current situation are needed as a baseline
benchmark. It makes good economic sense for information
systems managers to consider instituting a software-quality
initiative based on relevant and useful software metrics.

The following steps may be useful when implementing a qual­
ity-metrics project:

November 1994

1. Start the process on a small scale.

2. Publicize the organizational metrics program and its ra­
tionale.

3. Secure visible management backing and, more impor-
tantly, compliance in decision making.

4. Timely feedback is essential.

5. Change what does not work, an iterative process.

6. Dedicate a portion of the staff to metrics, if possible.

7. Provide positive feedback to individual employees.

8. Keep metrics visible in meetings, presentations, and
publications.

9. Use software-oriented metrics in quality measurements
throughout the organization.

10. Address employees' fear of metrics by focusing on qual­
ity improvement, not individual performance. Ease of use
of metrics tools should be emphasized. Many measurement
programs have failed due to lack of employee acceptance of,
involvement with, and use of the tools. Resistance to a met­
rics project can be open, such as questioning its cost or appar­
ent benefits, or hidden, which is more insidious and damag­
ing, and can come from either staff or management.

Conclusion
Software metrics can be a useful way to promote M's bene­
fits. Metrics can help to provide consistent and objective
measurements for performance comparisons. They can be
used as a marketing tool in the bidding process, to improve
process quality and efficiency, and to assess and improve user
satisfaction.

The best approach to a software measurement program is a
common-sense approach-analyzing in a different way data
that are already being captured. Also, emphasis on quality
improvement is paramount for successfully implementing
and continuing a software quality-improvement program.

Finally, metrics programs are situation-dependent. There is
no universal formula, statistical application, or audit program
that is applicable to every project in every organization. An
organization must know what it wants to measure and why
it wants to measure it for any metrics initiative to be ongoing
and successful. •

Research for this article was partially funded by the Department of Vet­
erans Affairs, Washington Information Service Center.

• COMPUTING 41

Calling All M Specialists

Susan Johnston was the 1993 winner of the Michael S. Distaso A ward
and was a member of the 1994 MTA Annual Meeting program com­
mittee.

Frederick Kohun, Ph.D., has been head of the Computer and Informa­
tion Systems Department at Robert Morris College (Pittsburgh) for the
past five years.

Endnotes
1. D. Gall, "Dollars and Sense: How M Compares with COBOL and
Relational Database Software," M Computing 1:5 (November 1993).
2. H.A. Rubin, Ph.D., "Software Process Maturity: Measuring Its Im­
pact on Productivity and Quality," in Proceedings, First International
Software Metrics Symposium (Baltimore, Maryland: sponsored by
IEEE Computer Society Technical Committee on Software Engi­
neering, May 1993).
3. L. Press, "Software Export from Developing Nations," Computer
26:12 (December 1993).
4. E. Yourdon, Decline and Fall of the American Programmer (Engle­
wood Cliffs, NJ: Yourdon Press, 1993).
5. L. Augenblick, "Barriers to Quality," PersonnelJournal69:30(May
1990).
6. Augenblick.
7. R.G. Eccles and P .J. Pyburn, "Creating a Comprehensive System to
Measure Performance," Management Accounting 7 4:4 (October 1992).
8. Eccles.
9. L.R. White, "Evaluating and Measuring Outsource Agreements,"

42 a COMPUTING

in Proceedings, Fourth International Corifere,y;_e on Applications of
Software Measurement (Orlando, Florida: sponsored jointly by the
American Society for Quality Control, Software Division; Centre for
Software Reliability; and Software Quality Engineering, November
1993).
10. R.W. Hilton, Managerial Accounting (New York, NY: McGraw­
Hill, Inc., 1991).
11. R.K. Youde, CMA, "Cost-of-Quality Reporting: How We See It,"
Management Accounting 73:7 (January 1992).
12. Hilton.
13. Rubin.
14. White.
15. Rubin.
16. D.R. Castellano, P.E. Janusz, and S.L. Tolochko, "Readiness
Growth Model: A Quantitative Analysis of Software Risk," (Technical
Report ARPAD-TR-93003, Department of Defense Publication, U.S.
Army Armament Research, Development and Engineering Center, Oc­
tober 1, 1993).
17. W.S. Humphrey, Managing the Software Process (Reading, MA:
Addison-Wesley Publishing Co., 1989).
18. E.F. Dindal, "Software Metrics in the MUMPS Environment,"
MUG Quarterly 21:3 (June 1991).
19. N.B. Harrison and B.D. Juhlin, Ph.D., "Customer Driven Reli­
ability Metrics," in Proceedings, Fourth International Conference on
Applications of Software Measurement (Orlando, Florida: sponsored
jointly by the American Society for Quality Control, Software Division;
Centre for Software Reliability; and Software Quality Engineering, No­
vember 1993).
20. C. Jones, "Sick Software," Computerworld 27:50 (December 13,
1993).
21. Jones.

November 1994

