
TIPS 'N'
TRICKS

Recursive Progratntning in M

One frequent problem with M
on some multiuser systems is
the lack of stack memory. Re­

cursion programming takes place
when a function calls itself possibly
many times, relies on a lengthy stack,
and is computed in exponential time.
An example of recursion is shown in
figure 1, where the program totals all
the numbers between 1 and 100, and
displays the result of each calculation.
Due to insuffic~nt stack memory, the
program crashes as soon as it has
called itself 24 times.

To resolve the problem of insufficient
stack memory, one option could be to
increase the memory, but this is not al­
ways viable on some M multiuser sys­
tems because all M jobs are allocated
the same amount of stack memory. The
problem could be resolved by using
iteration and thus allowing functions to
be computed in linear time. That is, in­
stead of using recursion, a programmer
could use the FOR command. The prob­
lem with the FOR command is that there
are functions, such as the factorial or
thefibonacci functions, that can be ex­
pressed most naturally (and most eas­
ily) via recursion.

To perform recursion without in­
creasing the stack memory, I chose to
use the disk drive as a stack but sacri­
ficed the speed of memory in favor of
the disk size. Two advantages in this
selection were that it would help in
debugging and also that any elements
on the disk stack can be accessed quite
easily without "popping off' the stack
as happens in conventional use.

A simple example of this is given in
figure 2, where the disk is used as a
stack for the labels of subroutine calls.

November 1994

by David Selwood

The routine in figure 2 is split into two
sections, with the first section simply
initializing two variables and calling
the code that performs the recursion.
The variable Num is used to hold the
number of the next addition and also
acts as an index into the disk stack.
When the routine performs a re­
cursive call, it sets up a temporary
global that within the brackets con­
tains the level of recursion, with level
1 (Num=l) being the first. Second, the
right side sets up the label that the rou­
tine should jump to when falling out
of the recursion. It should be noted
that the right side also could contain
the contents of variables that could be
restored when falling out of the re­
cursion. The routine then adds one
onto the variable Num and then calls it­
self with a GOTO. As soon as Num is
greater than 100, the routine then
starts to fall out of the recursion. The
index of the variable Num is checked
for on the disk and, if the label exists
where the routine should fall to, is
read. Again, note that at this time, if
the contents of other variables needed
to be restored, they could be read in
the same read statement.

Since the routine in figure 1 crashed
after 24 calls to itself, it would prove
difficult to compare for processing
times against the example in figure 2.
Disk caching was used (as it is on
most systems) and the actual perfor­
mance was more than acceptable.

Although the two examples of recursion
are trivial, the method of using the disk
as a stack has been used in a far more
complex situation for personnel sched­
uling. The actual algorithm forusing the
disk as a stack was the same as shown

here and the routine for rostering was
NP-complete (no known polynomial al­
gorithms and nondeterministic) and
would be difficult if not impossible with
linear techniques.

Note: This methodology is useful in
special cases, but the possibility of error
(in logically stacking and unstacking
values from disk) is not small. The extra
programming required might force the
programmer to "beat up" on the M sup­
plier to allow more nesting levels. M

ALGRECOl KILL
SET Num=l,Result=O
DO Check(Nwn)
QUIT

Check(Num) New (Num,Result)
SET Result=Result+Num
WRITE 1,Num,?10,Result
IF Num<lOO D Check(Num+l)
QUIT

Figure I. Recursion using memory.

ALGREC02 KIIL KIIL /\'!DIP(Sj)
SE!' Num=l.Result=O
DO Check
QUIT

Check New (Num.Result)
IF Num>lOO G CheckOl
SE!' Result=Result+Num
WRITE ! ,Num, ?10,Result
SE!' A'ID!P(Sj,Num)

="CheckOl"
SE!' Num=Num+l
Go Check

CheckOl S Num=Num-1,Var=SG
(/\'!DIP(Sj ,Num))

IF Var' ="" Go @Jar
KIIL /\'!DIP (Sj)
QUIT

Figure 2. Recursion using the disk as
a stack.

David Selwood has used M for more than four
years and works for Oldham NHS Trust where
he is the senior analyst for all development
platforms. He keenly awaits M products to be­
come more Windows-based. You may contact
him at 419 Rochdale Road, Royton, Oldham,
0115SL, United Kingdom.

M COMPUTING 37

