
FOCUS ON
FILEMAN

Sneak Preview: FileMan Version 21

Part 1 of 3: The
Database Server
We interrupt our regularly scheduled
investigation of FileMan's program­
ming hooks to bring you this preview
of FileMan version 21. The next re­
lease, due in early 1995, brings so
many improvements we cannot cover
everything in this column. This
month's M Computing carries the first
of three columns devoted to this very
special topic, and focuses on the data­
base server (DBS), a new program­
mer interface for FileMan.

Concept
Classic FileMan benefited from the
ease with which M handled input/out­
put and database access. FileMan' s
developers could fold these activities
in with general processing easily, as­
sisting in the rapid creation of sophis­
ticated database tools. Now, fifteen
years of computer science break­
throughs reveal the many benefits we
can reap if we separate our user inter­
face from database access. Client­
server, GUI, access through non-M
systems, object orientation, and inde­
pendence from any single database in­
terface all become possible with this
conceptual shift, which lies at the
heart of FileMan's new DBS.

The DBS consists of a suite of new
programming calls that function inde­
pendently of FileMan's classic API
(application program interface).
These new calls take advantage of all
the advances of the M standard made
over the past ten years; for example,
using the NEW command, parameter
passing, and extrinsic functions have

28 M COMPUTING

by Rick Marshall

allowed a degree of modularity not
previously possible, permitting ex­
panded use of reentrancy and re­
cursion. These calls contain no user
interface; silent to the users, they
communicate only with the calling
application. Finally, these calls wrap
up database access at a low level, pro­
viding the basic engine that underlies
Data Definition Languages, DataMa­
nipulation Languages, and Query
Languages in traditional database the­
ory. These essential ingredients to the
DBS throw the doors open to people
wanting to write a DDL, DML, QL,
or user interface of their own, and to
the File Man team itself, which plans
to take advantage of the DBS in ex­
ploring new database models and fea­
tures in future versions of FileMan.

Parameter Passing
Silent only to the users, the DBS speaks
to the calling application with a broader
and deeper vocabulary than the classic
API, with parameter passing as the ap­
plication's basic voice for speaking
back. Introduced by MDC (MUMPS
Development Committee) in the 1990
M standard, this feature of M wraps
every DBS call in a strong modular
envelope. Excepting only basic state
variables such as ouz, applications ex­
plicitly pass all needed information
through parameter lists. To make these
calls easier to master, all DBS calls
share common conventions about the
order and value of parameters.

For example, applications declare
files by passing file numbers, not
roots. This lets the DBS calls use their
understanding of the file's attributes
to save the application work later on.

Since this means applications will
now have file numbers in their symbol
table more often than file roots, the
FileMan team has provided the new
DBS function $$ROOTADILFD to return
a file's global root, given the file
number and internal entry numbers
needed.

As another example of parameter
passing, applications will pass arrays
by reference only when the DBS call
expects short local arrays. Since the
M standard does not allow passing
globals by reference, to pass arrays
of arbitrary size or location the appli­
cation passes the name of the array
by value; the DBS call will then use
the name of the array with subscript
indirection to access the actual array
values. The DBS documentation al-

'\.-
ways will declare how the calls ex-
pect each array to be passed.

A final key example, array roots are
always passed closed, rather than
open. This brings FileMan more into
line with the rest of M (which uses
closed roots in $ORDER, $QUERY, etc.),
and encourages the use of subscript
indirection, a powerful but little used
feature of M. Since applications will
now be using open roots for the clas­
sic FileMan API and closed for the
DBS, we have provided the functions
$$0REFADILF and $$CREFADILF to con­
vert between the two kinds of roots.

The Internal Entry
Number String
The parameter used to identify entries
in files deserves special scrutiny.
FileMan has always relied on arbi­
trary (or sometimes not so arbitrary)
record numbers to uniquely identify

November 1994

records in files. Also known as entry
numbers, internal entry numbers, or
IEN s, these numbers are adequate to
identify an entry in a top-level file,
but not in a subfile. Identifying this
kind of entry requires not just the IEN
for the subfile, but also the IEN for
the file that contains the subfile. Since
the subfile's parent file may also be a
subfile, FileMan may require several
such numbers to identify a unique file
entry. Classic FileMan uses two dif­
ferent conventions to represent these
sets of IENs. In the first, a series of
separate variables holds each IEN:
DO, DI, D2, etc. In the second, the
various nodes of an array hold each
IEN: DA, DA(l), DA(2), etc.

Both of these ~hemes, while ade­
quate in most contexts, suffer from
two related problems in special situa­
tions. Because these methods keep
the IEN s split out as separate values,
testing two such sets of numbers for
equality is not as trivial as it should
be, and using this information in a
subscript for sorting purposes results
in an arbitrary number of subscripts.

The DBS solves these problems by
using a new convention for represent­
ing file numbers: the Internal Entry
Number String (or IENS). This con­
catenates together the various IEN s
into a single string, with each IEN fol­
lowed by a comma, and the order of
the numbers with the deepest level
IEN at the left, and the top-level IEN
at the right. This scheme always re­
sults with a trailing comma as the last
character, an important detail since it
ensures all IENS values sort as
strings, a detail usually forgotten sev­
eral times by programmers first learn­
ing about IENS values. An example
of an IENS for a New Person file entry
might be "9," while that of an entry
in the Menu subfile of the Option file
might be "4,67,". The two DBS
ca11S-$$IEN/\DILF and DA/\DILF-let
the programmer convert between DA
arrays and IENS values.

November 1994

CALENDAR
January 16-20, 1995

USENIX Winter 1995 Technical Conference, Marriott Hotel, New Orleans, Louisiana. Call
714-588-8943 for details.

January 26-29, 1995
MUMPS Development Committee meeting, Sheraton Inn Albuquerque (Old Town), Albu­
querque, New Mexico. Call 301-431-4070 for details.

February 13-16, 1995
Austin Information Technology Conference for U.S. Department of Veterans Affairs em­
ployees. Register through the Austin HELPDESK at 512-326-6780.

February 14-17, 1995
ClienUServer West Conference and Exposition. San Jose Convention Center, San Jose, Cali­
fornia. Forregistration and information, call CMP Trade Show Services at 1-800-808-EXPO.

April 2-5, 1995
7th Annual National Managed Health Care Congress (with MIS sessions), Sheraton Washing­
ton/Omni Sheraton Hotels, Washington, D.C. To register, call 617-487-6700.

July 23-27, 1995
International Medical Informatics Association Medinfo '95. Vancouver Trade and Conven­
tion Centre, Vancouver, British Columbia, Canada. For information, write Medinfo '95 Ad­
ministration Office, Suite 216, 10458 Mayfield Road, Edmonton, Alberta, Canada. Phone:
403-489-8100;fax:403-489-1122,

Certain DBS calls use variations of the
standardIENS. Calls that deal with the
whole file, rather than a single entry,
leave off the left-most IEN, so that the
IENS starts with a comma. The re­
maining IENs then uniquely identify
the subfile, but not any particular entry
within it. The Lister and Finder calls
use this variation on IENS values, for
example ",67 ," to identify a specific
Menu subfile within the Option file.
The Updater, on the other hand, which
often deals with records that do not yet
exist or have not yet been identified,
uses place holders to stand in for spe­
cific IENs in the IENS, where the
place holders uniquely identify the un­
determined entry and also indicate
whether to add the entry or locate it.
For example, "?1,67," might repre­
sent an entry that will be found in a
specific Menu subfile of the Option
file, whereas "+2,67," would repre­
sent a different entry that will be added
to that same subfile. The DBS docu­
mentation for each call describes these
kinds of variations.

Standard Arrays
Although the DBS uses parameter
passing to speak to the application
wherever possible, database activities
often return too much data to pass
through the parameter list, forcing the
DBS to fall back on communication
through named arrays. Although each
call documents when this will occur,
the DBS always handles three kinds of
information this way: errors, help, and
text. Any DBS call able to generate
this kind of information will include a
parameter that lets the application
name the array where the call should
return the information. If the call
needs to return information in this
array, it will set a specific local vari­
able that the application should always
check for after the DBS call.
$G (DI ERR) means the call returned er­
ror messages, $G(DIHELP) means it
returned help text, and $G (DIMSG)
means it returned some kind of gen­
eral message text.

M COMPUTING 29

The DBS returns the text itself in a
standard structure within the named
array. For example, if the application
asked such information to return in
TEXT(42), the DBS would put errors
under TEXT (42; "D IERR") , help text
under TEXT (42, "DIHELP") , and gen­
eral messages under TEXT(42, "DIMSG

") . Each block of text gets its own nu­
meric subscript after that, followed by
the documented structure used to re­
turn the information. For example, if
a DBS call generated three errors,
TEXT (42, "DIERR" , o) would show the
count, and the 1, 2, and 3, nodes
would separate off the three errors.

If the application chooses not to re­
route this information, the DBS will
return it in /\TMP($J' "DIERR")' /\TMP

($J, "DIHELP"), and /\TMP($J, "DIMSG

"). The DBS call CLEANADILF will
clear out these three trees, as well as
the three local flags, when the appli­
cation has finished processing this in­
formation.

Dialog
The DBS generates the text returned
in these standard arrays through the
use of two new files: the Language
and Dialog files. The local variable
DUZ("LANG") specifies the language
the user understands, by referencing
one of the languages in the Language
file. This file also describes how each
language displays dates, numbers,
and other language-dependent enti­
ties. The Dialog file, on the other
hand, contains numbered entries,
each holding the text of a specific
message. Each message may include
parameter windows for values to fill
in at run time, and each entry describes
the significance of the parameters. In
addition, the Language file holds a
multiple for versions of the same text
in other languages, with a pointer to
the Language file binding them to­
gether. At run time, DUZ("LANG") in­
dicates which version of the message

30 /I COMPUTING

to return. All standard text returned
by the DBS-errors, help text, and
general messages-originates in the
Dialog file, as does the most com­
monly used text in classic FileMan.
All major DBS calls will return any
of a broad spectrum of precise error
messages that help the programmer or
user understand exactly what has
gone wrong, and the returned infor­
mation gives programmers the option
of coding to deal with specific prob­
lems as they arise.

Because the DBS executes program­
ming hooks, application program­
mers need to help enforce the user
interface silence. Rather than use
WRITE commands in these hooks, the
application should call the Loader:
EN/\DDIOL. The Loader will display
text passed to it, except within the
DBS, when the Loader will instead
load the text into the message array
and set DIMSG. This sleight of hand
happens without any intervention by
the application, and ensures that mes­
sages to the user travel through what­
ever route is needed to reach the ac­
tual user interface. If after a DBS call
the application does need to simply
WRITE the messages returned, the
MSG/\DIAL0G call can do that.

The Filer Data Array
Whereas the DBS uses these three
standard arrays to send messages to
the application, the application and
the DBS can use the Filer Data Array
(FDA) to communicate back and forth
about proposed changes to the data­
base. FDAs can identify fields of en­
tries within files and describe values
for each. The meaning of an FDA de­
pends on how the application uses it.
An FDA returning from the Data
Retriever call describes the current
values of those fields. An FDA node
returning from the Validator call ac­
knowledges that the value is legal for
that field. An FDA passed to the Filer

call changes the database based on the
contents of the FDA nodes. In gen­
eral, then, an FDA identifies some­
thing about the field values for spe­
cific entries in certain files: either that
the database looks like that, or should
be altered to look like that.

The application can locate an FDA in
any array, local, or global, at any sub­
script depth. The structures that make
an array an FDA are the last three sub­
scripts and the values of each node.
The last three subscripts are: the file
number, the record's IENS, and the
field number. The value of each node
is the value for that field of that record
in that file. For example, the FDA
node ATMP ($J, "EDIT", 200, "9, ", . 01

) = 11 EINSTEIN, ALBERT" describes the
.01 field of entry 9 in the New Person
file (# 200) as having the value "EIN­

STEIN' ALBERT". Returned from the
Data Retriever, this would tell the ap­
plication that user number 9 is Albert
Einstein. Passed to the Filer, it would
tell the DBS to change user 9's name
to Albert Einstein. To set up the FDA
nodes for a DBS cah, the application
can either use the SET command, or
call FDAADILF with the right parame­
ters. An even more convenient
method likely to work in most GUI
settings involves making a series of
DBS calls that first return an FDA de­
scribing the DBS, modify the FDA as
the user requests changes, and update
the database with that FDA, so that
the application never actually sets or
kills an FDA node. /I

Forward your FileMan questions or topics
you would like to see addressed in this col­
umn to G.FILEMAN DEVELOPMENT
TEAM@FORUM.VA.GOV, or write to
VAISC6-San Francisco, Suite 600, 301
Howard Street, San Francisco, CA 94105.

Rick Marshall works at the Seattle office of
VA's San Francisco Information Systems
Center. He is a member of the VA FileMan
development team.

November 1994

