
PLATFORM
INTEROPERABILITY

M Database Access Methods:
Which One Should You Use?

by Bruce B. Evans

M has come a long way since the days it was an op
erating system, a language, and a database. Today,
under increasing pressure to offer open systems,

vendors have responded with different access methods for
use by Mand non-M developers alike. This article will dis
cuss three external access methods and highlight why you
might consider using one over another. Finally, this article
will discuss the choice and the architecture that was made for
CorVision, an application generator, and the implications of
the decision.

Direct Access to M
The first broad category is direct-access APis (application
programming interface). With this method, a non-M applica
tion written in, say C or COBOL, directly calls M-vendor
written service subroutines that perform the essential func
tions of the M language. For example, there would be a
callable subroutine to perform $DATA, another to do $ORDER,

another for SET, and so on. This method has only one advan
tage: It allows non-M programs to access an M database. It
does have several disadvantages, however. To use M func
tionality, the developer really does have to understand the M
database and the language since direct access closely mimics
M language functionality. Since direct access is not a stan
dard, not all M systems have it, and it is different for those
that do. This means that code written to access one M system
is not portable to the others or any other database for that
matter. Finally, depending on how direct access is imple
mented by the vendor and used by the developer, it can be
slow. Every time a direct-access function is called, the
boundary between the current environment and M must be
crossed. It is this "boundary crossing" or call interface where
variables must be bound and unbound that can make the dif
ference between a practical and an impractical interface, es
pecially when performance is critical.

SQL Access
The second method, SQL access, has attracted the most at
tention recently. Many, if not all, M-system vendors already

6 Al COMPUTING

have released, or are about to release, an SQL interface. This
usually takes one of two forms, embedded SQL in M code
or dynamic SQL access from another language such as C or
COBOL. The clear advantage to an SQL interface is that it
allows non-'M developers to gain access to M data without
requiring knowledge of M itself or its global structures. In
essence by using SQL, M can be viewed as a relational data
base. If that can be said, M can take its place alongside other
mainstream technologies fully opening it to enterprise-wide
applications in a standard fashion. Turning Minto an open
relational database does not come without a price, however,
as will be shown.

A relational database's strength i.s M's weakness and vice
versa. Within the bounds of physical limitations, any proper
SQL statement will be processed by a relational database and
return predictable, correct results. To do this, it must first
examine its internal information (metadata) about tables, in
dices, and cardinality to determine how best to satisfy the
request. It must then construct the request internally and exe
cute it. All this requires resources and th~s decreases effi
ciency. Reduced efficiency is the price of flexible data access
at run time. The price of using M is that data-access methods
are determined by database structure and therefore must be
known at development time. This decreased flexibility often
translates to faster and more efficient access. In general, rela
tional databases must be highly tuned and somewhat "denor
malized" to obtain the performance of a reasonably designed
M database. So, it is important to realize that layering SQL
on top of M generally will require more storage, memory,
and speed to compare with the previous performance of
straight M access.

Thus when evaluating SQL interfaces to M, efficiency of the
SQL layer is very important. The portion of the database en
gine that decides how to satisfy an SQL request is called the
optimizer. Optimizing an optimizer is by no means a trivial
problem. Relational-database vendors have spent literally
years perfecting it such that response time for most requests
is reasonable. Therefore, efficiency will vary greatly from
vendor to vendor depending on the experience and level of
investment.

Any external SQL access to M requires an API to transport
SQL to Mand return results. Examples of this are Oracle's

September 1994

OCI (Oracle Call Interface) or Microsoft's ODBC (Open Da
taBase Connectivity). When evaluating SQL for M, it is im
portant to select an API that is sufficiently general to allow
non-M applications to access multiple databases, or even
switch databases without modifying source code. Note also
that not all SQLs are standard, so selecting an interface that
uses an SQL that complies with the ANSI SQL standard, or
comes close to it, is essential. If this can be accomplished,
applications using this API will be more homogeneous, more
maintainable, and will not be tied to a specific database. In
other words, they will be truly open.

All SQL interfaces require that any current M data structures
be mapped into a relational model. There are several factors
that may make this difficult. For instance, M does not impose
fixed fields, records, data types, or any degree of normaliza
tion on the developer. M data structures also may change at
run time, which is in stark contrast to relational databases that
are designed for third normal form data, fixed data structures,
and defined data types. Therefore, it is entirely possible that
portions of particular M data structures cannot be used in con
junction with an SQL interface.

Not all SQL interfaces are appropriate if writing to M is a
requirement. Two elements in particular must be considered
for writes to be effective: locking and transaction manage
ment. Locks issued by an SQL-initiated transaction must be
of the same type as other applications accessing the same da
tabase or conflicts will exist. Transaction management exists
in many forms with varying features such as rollback, jour
nalling, and two-phase commit. While it would be outside
the scope of this article to describe them all, this too must be
given careful consideration as it will have a major effect on
efficiency and functionality.

An External Call to an M Routine
The third method is an external call to an M routine. An exter
nal application calls an M routine that accesses M data and
returns a value. This value may then be processed by the call
ing routine. This method also has its advantages and disad
vantages.

Among the advantages are that, unlike direct access, there
are only two boundary crossings: one for the call and the other
for the return, and not two for every M function. This in
creases efficiency. The M code is portable from vendor to
vendor, and since the M database and language were de
signed to be used together, it is efficient. Among its disadvan
tages is, like the External Call API, that only M databases
may be accessed in this manner. Thus, applications that call
M routines will never be really open.

8 Al COMPUTING

Even if the M routines are written to be portable, changes
still may have to be made in three areas when accessing dif
ferent M databases. Maximum string length varies from ven
dor to vendor, so care must be taken to ensure that the return
value will never exceed this length. Further, since the method
of returning values is not standard, code in this area may have
to be changed. Finally, the method by which M routines are
linked to the external application will vary greatly between
vendors. Currently, the MUMPS Development Committee
is considering popular remote-procedure call mechanisms for
inclusion in the next M standard. If implemented, this would
make calling M routines standard across all vendors and thus
open up external applications.

Again, an efficiency versus openness judgment must be made.
Is it better to have flexible data access at run time via SQL or
can data-access methods be fixed at development time? If data
access methods are known at development time, is there suffi
cient expertise to write and maintain the M code that accesses
the database? If the answer to the last question is yes, then calling
an M routine generally will be more efficient than SQL access.

Virtual Relational Structure without
Sacrificing Performance
When it came time to interface CorVision to M, one of the
above choices had to be made. CorVision prefers relational
data structures to be effective, so an SQL interface seemed
to be the clear choice. Indeed, there was ~ady an SQL in
terface for most relational databases. For reasons of portabil
ity and efficiency, however, it was decided to generate and
call M routines. These M routines would emulate relational
access without all the overhead of an SQL.

The primary function of these routines is the two-way map
ping between M hierarchical structures and virtual normal
ized relational structures. These routines also are charged
with calling any other required preexisting M application rou
tines to obtain computed column results when required. Cor
Vision M access routines are created by first storing diction
ary, mapping, structure, and access methods in an external
repository. This repository is then used as input by a genera
tor to produce callable M routines. The routines are then in
stalled on the M system to be used.

Since the M code CorVision uses is all ANSI standard, the
same generated routines can be used to access M databases
from multiple vendors with little effort. Further, since the
data-access method is usually known by most production ap
plications at development time, the overhead of SQL can be
avoided. Therefore, relational access was achieved with
greater efficiency in one access method with only a minor
sacrifice in flexibility.

September 1994

f
f
f.

r
Having decided on the method, the next decision was the im
plementation architecture. See figure 1. A prime consider
ation was that M data be treated the same as other data
whether they be from sequential files or from relational data
bases. This would make the high-level application code for
screens, reports, and batch procedures completely database
independent, as well as allow for merging, joining, and trans
action management of data from disparate sources. To do all
this required a multilevel-access architecture.

At the highest level, the application architecture contains data
source-independent code for screens, reports, batch procedures,
menus, and so forth. Any time data access is required, a standard
set of generic input/output routines is called. These routines are
the same for any database including M.

Each generic 1/0 routine is generated to know what data
source to access. There are generic 1/0 routines for most data
base functions including reading, writing, selecting, delet
ing, locking, and transaction and cursor management. These
generic 1/0 routill.es then call database-specific routines at a
lower data-manager level.

The code at the data-manager level makes calls to M routines
in a vendor-approved manner. Data sent to M for writing are
in the form of strings. Data returned from M are also a series
of strings that are converted by the data manager into the ap
propriate data types and then placed into record buffers for
processing by the application level.

At the lowest level, generated M routines themselves handle
all database access including reads, writes, deletes, and lock
ing. For Reacts, the appropriate M routine assembles data
from globals, nodes, pieces ofnodes, routines, and so forth,
to create a relational row that is then passed back to the caller.
Writes do just the opposite: an M routine takes a relational
row and disassembles it into its component nodes, or pieces
of nodes. Locks lock developer-specified objects that arena
tive to the M environment. Thus CorVision applications eas
ily coexist with other native M applications.

This multitiered approach has several other advantages.
Since the M code is generated from an external repository,
every time a structure changes, the M code as well as gener
ated documentation follows along. Further, since the applica
tion-level code is data-source independent it can be made to
point at different data sources without changing code.

What's Best?
This article has described three external-access methods to
Mand some reasons for selecting one over another. But there
is no single method that is clearly superior to another in every
situation. Thus, it is critical to define your goals and objec
tives prior to making any choice. M

September 1994

CorVision
Application Logic

Generic 1/0 Routines
All DB I/Os

M Data Manager
M specific calling routines

Generated M
Routines

2 way_relational maEf>illll_

Figure 1. CorVision Multitiered Access Structure

What Is CorVision?
CorVision is a tool that generates applications across
multiple databases, such as M, Rdb, ORACLE, Ingres,
RMS, and C/ISAM. Additionally, it generates applica
tions for Open VMS and UNIX. Users can generate
applications either as client/server or character cell, de
pending on their requirements.

Developers describe their applications by describing
data sources, screens, windows, and menus, for exam
ple. These descriptions, called metadata, are automati
cally stored in a repository.

The CorVision generator then takes the metadata from
the repository to generate applications that include source
code (Microsoft Windows Resource files, C application
code, SQL, M data-access code, and so on), developers
and user documentation, as well as online help.

This generated code is then compiled and tested. Based
on test feedback, developers can rapidly change reposi
tory descriptions and regenerate those portions of the
changed application. Generated code is rarely, if ever,
modified by hand. Instead, CorVision allows the devel
oper to specify event points where code, if inserted, is
necessary. With each generation, these event points are
included automatically in the application.

Bruce Evans is an independent consultant with a master's degree in
mathematics/computer science. He designed the CorVision/M inter
face, a product oflnternational Software Group, Inc., Waltham, Mas
sachusetts. He lectures and consults on relational databases and on M.
He also designs and implements with M, CorVision, and Power
Builder. He can be reached at Sherborn Consulting Associates; the
phone number is 508-655-3633.

M COMPUTING 9

