
Question: Recently we found a prob­
lem in some code we had that was us­
ing the naked indicator. This code I

/\(l)=/\Y(2) ... does not appear to
work the same as s /I (1) =/\Y (2) . Is
this correct?

Editors: The use of the naked indica­
tor is primarily a short-hand notation
that is left over from some of the
MUMPS dialects that preceded the
current M language. These dialects
worked on hardware with limited re­
sources. Global buffers, as we cur­
rently understand them under most
modern implementations, were lim­
ited to one buffer per process and con­
tained the last physical block of global
data accessed by the process.

In these dialects, a full global refer­
ence (/\TE.ST (A, B)) forced the system
to physically access the disk, while a
naked reference (/I (B)) told the sys­
tem to look at the last block accessed
for the date before going to the physi­
cal disk. These systems predated the
use of B-trees for data storage. The
person designing the system had to
put a great deal of thought into the
particular hashing algorithm(s) used
for determining subscripts and what
data were stored where.

If a global design had three levels of
subscripts, then a full reference al­
ways caused at least three physical
disk reads. On the other hand, if the
data sought were not found in the first
data block, then continuation blocks
were used, another time-consuming
process. The system designer's chal­
lenge was to find the best balance be­
tween subscript depth and continua­
tion blocks to minimize the number of
physical disk reads.

Once the database was designed, the
programmer also could help reduce

52 Ill COMPUTING

Just Ask!

the number of physical reads by clus­
tering the data accesses combined
with use of the naked reference. Ana­
ked reference simply told the system
to look at the last block accessed (kept
in the disk buff er for the process) and
look for the data there. If the particular
node was not found in the disk buffer,
the system constructed a full global
reference and began searching for the
node from the top of the global, just
as it did for an explicate full reference.

This obsession with limiting disk ac­
cess (and reducing the number of ma­
chine instructions) is evident in other
characteristics in the M language. The
evaluation of expressions is done
from left to right without operator pre­
cedence to minimize stacking and
look-ahead. The SET command does
not look at the target storage location
(the left side of the equal sign) until it
is ready to store a value (the value of
the right side of the equal sign).

Thus, the purpose of the naked indica­
tor was performance. In modern M
implementations, a naked reference
has no performance advantage over an
explicate full reference. In theory, the
opposite may be true. A naked refer­
ence may require more processing
while it reconstructs the full reference.
Without any performance advantage,
why was the naked reference carried
over into modern M? The primary rea­
son was to ease the conversion of
MUMPS dialects to standard M. If the
logical function of the naked syntax
was the same between the dialect and
the standard, the programmers would
not have to spend as much time back­
tracking through the code to determine
what the original programmer intended
the naked reference to reference.

Today, the reason for using the naked
reference has changed. Like most
tools, the people (programmers) actu­
ally using the tool found another use
forthenaked: shortercode. Much like
contractions, acronyms and pronouns
are used in English, the naked indica­
tor is used by programmers to say the
same thing in less space. Like the En­
glish counterpart, understanding the
actual intention sometimes takes a bit
of work. The meaning of he drove the
bus is clear only in context of what
came before this sentence, sometimes
way before. There could be three dif­
ferent interpretations: what the author
intended, what a reader understands,
and what strict parsing would produce.

In the examples above, r
/I (1) = /\y (2) . . . requires the evalua­
tion of an expression, left to right. To
determine what variable is used for
the /I (1) requires you to know what
the last global reference was in the
code preceding. That value is then
compared with the value in /\y (2) .

In the SET statement, s /I (1) =/\Y (2),

the value to be assigned, /\y (2) , is de­
termined first, then M looks to see
where to place the value. Since the lo­
cation is a naked reference, it be­
comes dependent on the preceding
global reference, the /\y (2) . Thus, the
storage location is /\y (1) .

While getting naked may be fun and
exciting, it can also lead to misunder­
standing, confusion, and, ultimately,
get you into trouble. •

Send Just Ask! questions or requests to the
managing editor at M Computing.

September 1994

