
DATABASE
MANAGEMENT

Using M to Discover Knowledge

by Charles Williams and Z. Chen

Introduction
Knowledge discovery in databases (also called database min
ing, or simply data mining) is the nontrivial extraction of im
plicit, previously unknown, and potentially useful informa
tion from data. Knowledge discovery in databases has a very
close relationship with machine-learning methods employed
in artificial intelligence (AI). Knowledge-discovery tech
niques have been used to "rediscover" scientific laws such as
Boyle's law; the~ are also useful in other applications such
as discovering regularities in business data.[1,2]

According to a 1993 panel discussion, mining data has be
come a very popular activity, driven by the decision-support
problem faced by most large retail-chain enterprises. Such
retail chains record every item consumers purchase in every
store by capturing these data at the point of sale. Buyers and
merchandise arrangers then use this database to rotate stock
and make purchasing decisions. The query to such a database
is, "Tell me something interesting." Specifically, users want
a system that mines the data for useful information. [3]

Relational-database systems offer many attractive features
for machine learning. They store a large amount of informa
tion in a structured and organized manner. Such uniformity
facilitates the development of efficient learning algorithms.[4]

The main purpose here is to show how to incorporate knowl
edge-discovery techniques into M computing. We first
briefly review the basic idea of knowledge discovery in data
bases, then through example, show how knowledge discov
ery can be carried out. Sample codes follow in the appendix.

Basics of Knowledge Discovery
in Databases
To illustrate the basic idea of knowledge discovery, consider
the following process of learning characteristic rules.[5] A
characteristic rule is an assertion that characterizes the con
cept satisfied by all the data stored in the database. Suppose
that a student relation in a sample university database consists
of the following fields: name, category, major, birth place,
and grade point average (GPA). In addition, there is a concept-

September 1994

hierarchy table, which is a concept tree organized as an IS-A
hierarchy (such as music and history can be generalized into
art; junior and senior can be generalized into undergraduate,
etc.).

Now we want to find out something interesting about graduate
students. A four-step algorithm for learning a characteristic
rule can be conducted as follows. Step 1 is the extraction of
the task-relevant data by performing selection, projection,
and join on the relevant relations (such as dropping the student
name field, since we are not interested in individual students).

Step 2 is the attribute-oriented induction process; generaliza
tion should be performed on attributes by substituting each
attribute value with its higher-level concept (such as replac
ing physics by science).

Step 3 is the simplification of the generalized relation (such
as removal of duplication). Step 4 is the transformation of
the final relation into a logic formula. Here is a sample rule
that may be produced by the discovery process: A graduate
student is either a Canadian with an excellent GPA or a for
eign student majoring in science with a good GPA.

Note that this rule is not explicitly stated anywhere in the
database. Rather, itis derived from the stored data.

The most popular format of a database rule takes the format
of "If Cl then C2" orof Cl~ C2. In fact, a rule is not neces
sary to cover all instances. If a rule is almost always correct,
then it is called a strong rule.

Producing Suggestions with
Database Mining
Since M computing has been extensively used for database
management, it is important to incorporate knowledge-dis
covery techniques into M. Recently we have explored one
aspect in this regard, namely, how to apply basic knowledge
discovery to derive some missing information or provide sug
gestions to the user by mining the data available in the data
bases. We have developed a simple experimental program for
this purpose. (To simplify our discussion, this experimental
program will be referred to as our "system.")

Consider a relational-database schema (namely, a set offields
or attributes) and its relation (namely, the actual rows in the
table) containing student records in a university. Part of this
relation is depicted below.

Ill COMPUTING 31

s-name ssn age sex major

j Bohn 999 23 m appl math
k Silverman 435 21 f computer
...
(many other rows)

As background information, the computer system also has
a concept-hierarchy table to indicate the hierarchy of some
concepts:

general special more special (fields)

science math applied math (rows in table)
science computer SC

art fine art
art drama

The information stored in this table, of course, can be re
trieved by users. We are interested in the following scenario,
however, which cannot be handled by conventional database
processing. Suppose somebody wants to apply for admission
to this university, but does not know which major is appro
priate. The potential applicant can ask our system for help.

The system works as follows. It interfaces with the user, ask
ing for information for each field. In case the student does
not know the answer for a particular field (such as the "major"
field in this case), a blank or a question mark (?) can be used.

The following is a sample session of user interface:

s-name: b johnson
ssn: 435
age: 19
sex: m
major:?
hobby: baseball
rank (percentage): 15

Notice that this kind of query is different from conventional
queries, because this applicant is. not in the database. In a
conventional database system, nothing will be retrieved for
this user. But our system can perform a kind of inference
so that the data actually stored in the database can suggest
information. In fact, in order to answer this query, the system
will search through the existing rows in the original database.
As a result of the search, candidate rules will be constructed
and stored in table form. Finally, a :,most likely" value will
be suggested as an answer for the user. In general, a rule table

32 Ill COMPUTING

hobby rank (percentage)

football 10
dance 15

in the system consists of two parts: the "if' part consisting of
values of two or more fields (columns) and the "then" part
consisting of one or more fields (columns).

Back to our example. A suggestion can be made to the poten
tial applicant. Suppose searching the existing database shows
that university students currently enrolled whose hobby and
class rank are similar to the user tend to major in science.
Then the following rule can be constructecl:

if hobby= sports, rank(percentage) = 20
then major= science

Consequently, "major = science" will be recommended to
the potential applicant.

This rule is formed by dropping some columns in the original
databases and performing some necessary generalizations
(using the hierarchical table as described above).

A rule may be more specific or more general. For example,
the following is another possible rule that is more specific
than the one given originally (because the suggested field
"computer science" is narrower than "science"):

;_

if age< 30, rank(percentage) = 15
then major= computer science

A Learning Algorithm Incorporating
M Features
We now briefly describe the algorithm for our experiment in
knowledge discovery. We have adopted part of the classifica
tion-rule-learning algorithm as briefly summarized in the sec
ond section of this article. [6] The original algorithm takes an
attribute-oriented approach; we have revised it to incorporate
some features of tuple-oriented approaches. [7] Another rea
son for revising the original algorithm is to incorporate some
features of the M language so that it is more suitable for M
computing.

Since rules to be discovered have the format of "if condition
then conclusion," and since both condition and conclusion
parts are concerned with one or more attributes, our algo
rithm loops through the database N times, where Nis the total
number of fields minus the number of fields in the drop list
(such as student names). The key idea here is to start with
fields to be included in the "then" portion of the rule to be

September 1994

1
I

l

' l

I

discovered, then to work backward to deal with the "if' por
tion of the rule. In order to do this, we need to combine the
other fields in all possible combinations to find the strongest
rules. For example, assuming that the "then" part is dealing
with the field "major."

A counter is used to record the frequencies of each candidate
rule. The rules with highest frequencies will be selected. For
example, in a database with 1,000 records, if 50 of them con
tain ages less than or equal to 30, rank less than or equal to
15, and the major= math, then it is reasonable to form a rule:
ifage = 20 and rank= 10, then major= math. In general, the
number of fields needed to be considered at the "if' part of
·a rule may be k (a number between 2 and N). Whenever many
fields are considered at the same time, the processing time
could be long. Heuristics (including domain knowledge) can
be incorporated to determine an appropriate value of k.

To simplify matters, in the following algorithm, K = 2. In
this case, the second "for" loop will go through each field
also and form all possible pairs of fields. Each occurring pair
will be counted and stored as a candidate (possible) rule for
each record processed. After all fields have been processed
in this manner, the candidate rules stored in a separate table
will then be checked for their strength.

Strength is measured by the frequency of occurrences. If the
strength of a rule is not greater than some predefined thresh
old, the candidate rule is eliminated as such. At the end of
this entire process, the rule table contains all the valid rules
that can be used to offer a suggestion to an incoming query.

In summary, the algorithm used for database mining can be
expressed as shown here (using pseudo code):

loop_l for I is 1 to num_of_fields
if I is not in dropped list

do loop_2
loop_2 for J is 1 to num_fields

if J is not in dropped list and J is
not equal to I

do loop_3
loop_3 for K is 1 to num_fields

if K is not in dropped list and K is
not equal to I

process record

M Implementation
We have implemented the above algorithm on an IBM PC.
(using an Intel 486 processor). The program is generic so that
it is not dependent on a particular domain (such as a student
database). We set up tables that contain information such as
the names of the attributes, the number of attributes, and
those attributes that should be dropped from consideration
because they are not used for database-mining purposes (such
as student names).

September 1994

A standard version of M is used in our experiment. [8] A
slightly edited version of a sample source program in M
(slightly edited due to editorial consideration) is shown in the
appendix, where the main program is depicted in figure 1,
while the user interface part is shown in figure 2.

There are some advantages in using M as a programming lan
guage. The most important advantage is the ability to use
strings as array subscripts. This allows us to develop, enu
merate, and store discovered rules all within the same array.
When retrieving the rules from the rule table, we could use
these same subscripts in a comparison with the pattern being
searched. The flexibility of M to loop has made the code short
and simple.

Various Applications
Database mining can be used in many application domains
of the real world. Generally, applications can be used either
for predictive (namely, to predict a result) and abductive
(namely, to find a most likely explanation) purposes, or a
combination of both. For example, in a travel agency with
a database recording previous customers' profiles and their
destinations, suggestions for possible vacation destinations
can be made for travelers who do not have a clear destination
in mind.

To realize this, a historical database of user queries can be
established by recording user profiles and observing user be
havior. Using the algorithm similar to that shown in the previ
ous section, rules can be constructed to associate variables
related to user profile on one hand, and destination on the
other. A rule might look like this:

If income = medium and interest = f.or _kids
then destination= Orlando

As another example of database mining, from a series of que
ries submitted by the same user, knowledge-discovery tech
niques can help to detect what this user really wants. Data
base mining can also help chart a market trend from the bulk
of recent data with many variables.

Related work can be found in recent journals and proceed
ings; for example, an interval classifier for database mining
can be found in Agrawal' s article on an interval classifier. [9]

Conclusion
Although our work is still in the experimental stage, and al
though some improvement is needed, we believe that knowl
edge-discovery techniques have good potential in M comput
ing, and M computing provides various technical advantages
for knowledge discovery.

M COMPUTING 33

In addition, we also believe that this study will benefit both
industry and educational institutions. In fact, the basic con
cept of knowledge discovery in databases can be incorporated
into upper-level computer-science courses such as artificial
intelligence or database-management systems. Al

Charles Williams is graduating from the University of Nebraska at
Omaha. He has five years' experience in the data-processing field, pri
marily with M. He was a programmer-analyst at World Data, Inc.,
(Omaha, Nebraska) when he implemented the project described in this
article. He is now affiliated with Advertech Ltd. (Atlanta, Georgia).

Z. Chen holds a Ph.D. from Louisiana State University. He has been
affiliated with the Department of Computer Science at the University
of Nebraska at Omaha since 1988. He is interested in various issues
about building intelligent information systems, including knowledge
discovery in databases. His e-mail address is cs061@unocss.unomaha
.edu.

Appendix

MINING ;Charles Williams; 18 Apr 1994
; Data Dictionary at label DD
MAIN K ARULES

S START=l,END=$O(ATABLE("FIELDS",""),-l}
F P=START:l:END I '$D(ATABLE("FIELDS",P,"N")) D
. F Q=START:l:END D:Q'=P&'$D(ATABLE("FIELDS",Q,"N")

Endnotes
1. W.J. Frawley, G. Piatetsky-Shapiro, and C.J. Matheus, "Knowl
edge Discovery in Databases: An Overview." Al Magazine, 13: 3
(1992): 57-70.
2. G. Piatetsky-Shapiro and W .J. Frawley, eds., Knowledge Discovery
in Databases (Cambridge, Massachusetts: MIT/AAAI Press, 1991).
3. M. Stonebraker et al., "DBMS Research at a Crossroads: The Vienna
Update," in Proceedings of the 19th VLDB, eds. R. Agrawal, S. Baker
and D. Bell (Menlo Park, California: Morgan Kaufmann, 1993), 688-
692.
4. Y. Cai, N. Cercone, and J. Han, "Attribute-Oriented Induction in
Relational Databases," in Knowledge Discovery in Databases, ed. G.
Piatetsky-Shapiro and W.J. Frawley, 213-228.
5. Cai.
6. Cai.
7. D.J. Russull and B.N. Grosof, "A Declarative Approach to Bias in
Concept Leaming," Proceedings 6th AAA1 (Menlo Park, California,
1987), 505-510.
8. Standard MUMPS Pocket Guide (Silver Spring, Maryland: M Tech
nology Association, 1990).
9. R. Agrawal et al., "An Interval Classifier for Database Mining Appli
cations," in Proceedings of the 18th VWB, (Vancouver, British Co
lumbia, 1992) 560-573.

.. F R=START:l:END I R'=P,R'=Q, '$D(ATABLE("FIELDS",R,"N") S RECORD=O
........... F S RECORD=$0(ADATA("RECORDS" ,RECORD)) Q:RECORD="" D

S SUBl=Q_"="_$P(ADATA("RECORDS",RECORD},"",Q)
S SUB2=R_"="_$P(ADATA("RECORDS",RECORD),"",R)
S SUB3=$P(ADATA("RECORDS",RECORD),"",P)
Q:SUBl=""!(SUB2=""!(SUB3=""))
s

ARULES(P,$$convert(SUB1},$$convert(SUB2),$$convert(SUB3}}=+$G(ARULES(P,$$convert(SUB1),$$convert(SUB2),$
$convert(SUB3}})+1

D CLEANUP ;Cleanout rules below threshold
MAINQ Ql
CLEANUP ;Cleanout any rules that are below the ;threshold

S Sl=""
F S Sl=$0(ARULES(Sl}} Q:Sl="" S S2="" D
. F S S2=$0(ARULES(Sl,S2)) Q:S2="" S S3="" D
.. F S S3=$0(ARULES(Sl,S2,S3}} Q:S3="" S S4="" D
... F S S4=$0(ARULES(Sl,S2,S3,S4)} Q:S4="" D
... , K:ARULES(Sl,S2,S3,S4}<ATABLE("THRESHOLD")

ARULES(Sl,S2,S3,S4}
CLEANUPQ Q
convert(string) ;Routine to convert upper case to lower case

S upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
S lower="abcdefghijklmnopqrstuvwxyz"
S outstr=$TR(string,upper,lower)

convert q Q outstr

Figure 1. The main routine for knowledge discovery.

34 Al COMPUTING September 1994

REPORT ;Charles Williams;ll:59 PM 6 Apr 1994
;This is the entry point for the user interface to an
;Artificial Intelligence Query System. This program uses a
;database set up by the MAIN entry point.
;The program will allow data entry of record information and
;will perform queries on fields that are not filled in.
W #!!,"Welcome to the Williams' Data Entry Query System."
W !,"Please fill in the following information. If you do not"
W ! ,"know an answer, leave it blank or enter 1111 ?1

"' and the system"
W !,"will suggest an answer for you!"
S FLDNUM=O
F S FLDNUM=$0("TABLE("FIELDS",FLDNUM)) Q:FLDNUM="" D GETDAT
R ! !,"Press any key to continue.",ans#l
W #,"You Entered the following data:",!
S FLDNUM =0
F S FLDNUM=$0("TABLE("FIELDS",FLDNUM)) Q:FLDNUM="" W !,"(FLDNUM)_'.': ",$TR(RECORD(FLDNUM),"?")
W !,"Would you like to start over and re-enter your data?"
R YN#l
G:YN?lA&("Yy"[YN) REPORT
S FLDNUM=O
F S FLDNUM=$0(RECORD(FLDNUM)) Q:FLDNUM="" I RECORD(FLDNUM) =""!(RECORD(FLDNUM)["?") D LOOKUP
;Look up the necessary fields!
W #,!!,"Your final record is:"
F S FLDNUM=$0("TABLE("FIELDS",FLDNUM)) Q:FLDNUM="" W!,"(FLDNUM)_": ",$TR(RECORD(FLDNUM),"?")

REPORTQ Q
GETDAT ;Get the data from the user

w ! '"(FLDNUM)_": II

R RECORD(FLDNUM)
I

RECORD (FLDNUM)='"' ! (RECORD (FLDNUM) ["?"), $P("TABLE("FIELDS"),"")
[(","_FLDNUM_",") W !,$TR("TABLE(11 FIELDS 11 ,FLDNUM), 11

:
11

)_
11 is a mandatory field." G GETDAT

the mandatory fields
GETDATQ Q
LOOKUP

W #,"Now searching the "_$TR("TABLE(11 FIELDS 11 ,FLDNUM), 11
:

11
)_

11 field"
S (SUBl,STRONGEST)=O,ANSWER=""
F S SUB1=$0("RULES(FLDNUM,SUB1)) Q:SUBl="" S SUB2=""

........... F. S SUB2=$0("RULES(FLDNUM,SUB1,SUB2)) Q:SUB2="" D LOOK2
I ANSWER'="" W ! , """"_ANSWER_"'"' was the best fit for this
field would you like it entered for you?" R YN#l
S:YN?lA&("Yy"[YN) RECORD(FLDNUM)=ANSWER

LOOKUPQ Q
LOOK2 ;

Q:$$convert(RECORD($P(SUB1,"=")))'=$P(SUB1,"=",2)
Q:$$convert(RECORD($P(SUB2,"=")))'=$P(SUB2,"=",2)
SANS=""
F S ANS=$0("RULES(FLDNUM,SUB1,SUB2,ANS)) Q:ANS="" I "(ANS)>

........... STRONGE.ST S STRONGEST=" (ANS) , ANSWER=ANS
LOOK2Q Q

Figure 2. The user-interface portion of the system.

September 1994

;Cannot skip

Al COMPUTING 35

DD ;ARULES(FLDNUM,SUB1,SUB2,SUB3)=THRESHOLD, doubles as an index
;of rules derived from the records in the database
;The threshold indicates the strength of the formed rule
;START,END - first and last fields
;ATABLE("FIELDS",FLDNUM)=FLDNAME, name of fields
;ATABLE("FIELDS",FLDNUM,"N")=NULL, index
;ADATA("RECORDS"), physical records delimited by""
;FLDNUM, numeric id of the field
;RECORD(FLDNUM), an array of the field data entered
;STRONGEST, contains the strongest threshold

Figure 3. The data dictionary.

We can add GUI
(Graphical User Interface)

Capabilities to your
MUMPS Applications!

Specialists in the development of
MS Windows applications for MUMPS databases

Give us a call to discuss how we can bring your
MUMPS software into the 90's.

•

0

••

00 LCI ■□□□■■
■□■□□■

Software Development & Services

300 Lenora Street
Sui.te B-265

Seattle, WA 98121

206-998-2371
(FAX) 206-322-3715

Internet: LCI@eskimo.com

We also provide training and other custom software development.

36. Al COMPUTING

G\LIFORNIA

~
MEDICAL SERVICES

ORGANIZATION

PROGRAMMER (MUMPS)

California Pacific Medical Services Organization is a rapidly
growing, nationally recognized, hearth care organization

· located in San Francisco.

To help us better meet the complex needs of our growing
use. r community, we are adding an experienced develop

ment programmer to our IS team. Reporting to the
division's Director, this position involves programming of
user interfaces and specialized output and formulation of

. functional and technical documentation. , ,

Requirements include at least two years M programming
experience in a health care setting, BA/BS degree in

Coml?uter Science or Information Systems, or an equivalent
combination of education and work experience. Knowledge

of IDX products is desirable.

As part of our team, you will play a critical role in the
future of this innovative organization. We offer an excellent

salary and oenefits package.

For immediate consideration, fax or send
your resume and salary requirements to:

Director, MIS
CPMSO

1388 Sutter St., Suite 400, San Francisco, CA 94109
Fax: 415 749-4800

September 1994.

