
PLATFORM
INTEROPERABILITY

Translating M into English

by W. Lloyd Milligan

M code has an opaque, even cryptic, appearance to the
uninitiated. Part of the reason is the near universal
practice of abbreviating M names (commands,

functions, and special variables). To make matters worse,
prior to the NEW command, variable names typically lacked
mnemonic significance. Older code also had to deal with an
awkwardly limited scope of IF, ELSE, and FOR. This limita­
tion, since overcome by the addition of block structure, led to
long and complex code lines consisting of many commands.
These and other factors too often combined with an undisci­
plined programming style to produce M code that is difficult
to read and maintain. This article presents a system for read­
ing and interpreting M code that is based partly on ideas pro­
posed by Donald Knuth a decade ago.

Knuth introduced the term "literate programming" in a 1984
paper aimed at promoting better program documentation. In
this influential paper, Knuth suggested that computer pro­
grams should be written in such a way as to explain to human
beings what the programs are doing. Programs, in this view,
become "works of literature." Correspondingly, the pro­
grammer's main concern is with "exposition and excellence
of style." [1,2,3]

The literate programming viewpoint represents an important
shift in emphasis. Instead of focusing on algorithmic quali­
ties, elegance of data structure, and so forth, the programmer
must think about how readily the program can be understood
by others, and how conveniently it can be maintained and
adapted to changing requirements.

Knuth applied to literate programming his usual meticulous
and exhaustive approach, creating a completely new lan­
guage environment called WEB.[4] At the time, Pascal was
a popular programming language, and a second language to
many programmers. The WEB system combined Pascal with
TEX, Knuth's beautiful document-formatting language.[5]
WEB has since been adapted to a number of other languages.

This article describes a system for reading and interpreting
M code. This system is not a programming language. (The
programmer creates M source code in the usual way.) Per­
haps an example will clarify what the application does. Given
the M source code

22 M COMPUTING

Q X_$S(T] 1111 &$D(VERBOSE):" {"_T_"}", 1: "")

as input, the system produces TEX source code as output (ac­
tually LATEX):[6]

Quit returning X concatenate \char 36 SELECT(if T
follows{\em null\/} and \char 36 DATA({\em verbose
mode flag\/}) : then "\verb+{+" concatenate T
concatenate "\verb+}+",
if 1 : then {\em null\/})

TEX then compiles this source to produce

Quit returning X concatenate $SELECT (if T follows
null and $DATA (verbose mode flag): then"{" concat­
enate T concatenate "}", if 1 : then null)

This example shows only a fragment of the complete docu­
mentation for an M routine. In practice, appropriate header
and sectioning information is generated, consistent with
LATEX's article style (similar to the style of this article).
Even footnotes are included.

Consider another potential benefit of a WEB-like M routine­
documentation system: A serious shortage of experienced M
programmers prevails in several geographic areas. [7] In con­
sequence, many organizations train their own M program­
mers. Whereas only a few months are needed to learn the
rudiments of M, much longer time is required to acquire a
safe working knowledge of complex M applications, such as
one of the VA DHCP (U.S. Department of Veterans Affairs
Decentralized Hospital Computer Program) packages. The
documentation system described here can be useful to the
beginning or intermediate programmer attempting to read
and understand complex code.

Old code is never adequately documented, or so it seems. Can
the present application facilitate the task of understanding old
code? Again, the answer depends on the programmer's expe­
rience level. In one respect this documentation system speeds
the task of reading and understanding code by folding remote
references into the code location being analyzed, thus sparing
the human reader a memory-taxing effort. The way in which
this is accomplished will be explained in more detail later.

The M Code Reader
Call the application the "M Code Reader." At present the
code reader consists of nine M routines and four VA FileMan
files exported as Ao I FROM initialization routines. FileMan ver­
sion 18 or higher and the device selector /\%ZIS are needed

September 1994

to initialize and run the application. The VA Kernel is not
required. The Kernel PACKAGE file (included with File­
Man) should exist, however. The code reader accepts M code
as input and generates either plain text or TEX language
source code as output. Most definitions used by the program
are stored in FileMan files. File entries and program parame­
ters determine the verbosity and exact wording of the output.
For example, the M construct $P (Y, u) might be read as
$PIECE(Y, delimited by up-arrow). The words "delimited
by" are defined as the second argument of $PIECE in the IN­
TRINSIC FUNCTION file; the variable u is defined as "up­
arrow" in the KERNEL VARIABLES file. [8] These files are
an integral part of the code reader application.

The attentive reader may have wondered where the code
reader found the first example's definition (in code on page
22) of the variable VERBOSE. Obviously, variable defini­
tions are context-specific. In resolving a local variable name,
the M code reader first consults the ROUTINE DOCUMEN­
TATION file, theµ,_the KERNEL VARIABLES file. In other
words the code reader selects a routine specific or package­
wide definition, if one is available, before a system wide one.
For example, if u stands for the Mann-Whitney U statistic in
some routine, that routine's definition will take precedence
over package-wide or VA Kernel usage. It is possible to avoid
substituting any definition (say u is a scratch variable) by de­
fining a variable equal to itself (u=U). Variables that are not
defined in either the ROUTINE DOCUMENTATION or
KERNEL VARIABLES files are rendered verbatim.

The ROUTINE DOCUMENTATION file points to the VA
Kernel PACKAGE file (9.4) and includes fields for routine­
specific variables, package-wide variables, and their defini­
tions. Again, the high-to-low precedence order for variable
definitions is 1) routine-specific, 2) package-wide, 3) sys­
tem-wide.

Definitions may be entered for subscripted variables. For ex­
ample, FileMan variables DIC(O), DIC("A"), DIC("B"), and
so on, are defined in the KERNEL VARIABLES file. And,
of course, definitions are substituted for defined variables in
subscripts. Thus, although the code reader parses expressions
to the atomic level, in very verbose mode, it checks to see if
substitutions are possible at higher levels. For example, the
truth-valued expr~ssion $D (x) #2 would be read as "X is de­
fined.'.' More precisely, in very verbose mode, the literal
reading "$DATA(X) modulo 2" is followed by "Note:
$D(X)#2" may be read as "Xis defined.'' This interpretive
note .is provided as an example. The user may insert code at
vv11 AFFCXPl, in the form ofthe example provided, to produce
additional customized notes.

September 1994

Routine Comment Lines
A traditional form of M documentation uses the semicolon
comment within routines to describe what the routine or code
segment does. Some programmers also document variables
in this way. It is a fairly common convention to comment
entry points. In verbose mode, the M Code Reader resolves
routine line references and includes the comment in analysis
of code from the calling point. For example, suppose the code
line being analyzed includes s Y=$$TR11RTN(X), and further
suppose that the entry point TR11RTN includes ; ; Translate

TeX control characters. The code reader appends this
comment (with semicolons and leading spaces stripped) in
its analysis of the set command. It will say, "Set Y equal to
$$TR/\+ RTN Translate TeX control characters."

Here is another example:

Q:B=2 $$RndBin(L)

The reader interprets this command as,

Quit, if B equals 2, returning $$RndBin(L) Random
binary string of length L.

An interesting and WEB-like extension of this facility is the
code reader's ability to consider M comments (and variable
definitions, as well) as TEX source code. Had the comment
at tag 11RTN read,

;;\begin{mweb} Translate \TeX\ control characters
\end{mweb}

the output would have converted \TeX to TEX-

TEX source code does not have to begin and end on the same
line. A multiline comment can be written, for example, to
include a math formula that is being coded in an extrinsic
function. [9] In such unusual cases it may be desirable to sup­
press other output, such as the line tag and verbatim com­
ment. This is accomplished through setting a program para­
meter (described below).

Another source of explanatory text is the FileMan dictionary
of files, 11DIC. Under some circumstances, the code reader
recognizes a file root and is able to work back to the file name.
Everything must be in perfect agreement for the code reader
to hypothesize a name. Thus, false file names for non-File­
Man global references are highly improbable. The code
reader interprets the following line from its own code,

S:Y Y(O)=$G(11DIZ(l6021892.2,Y,O)),F=+$P(Y(O),U,3)

as,

Set, ifY, Y(0) equal to $GETCDIZ(16021892.2, Y, 0)
INTRINSIC FUNCTION file) and F equal to canonic
$PIECE(Y(0), delimited by up-arrow, piece 3).

-M COMPUTING 23

The program does not always succeed, however, in identi­
fying a file reference that would be obvious to an experienced
programmer.

The code reader produces voluminous output-a one-page
routine may expand to twenty pages ofliberally spaced analy­
sis. Each code line corresponds to a LATEX ''\subsection,"
and is identified using the natural TAG+OFFSET format.
Due to the quantity of output generated, it is not possible
to include an informatively long example in this summary
description. One final example will be given to illustrate sev­
eral ideas in combination. This example includes a LATEX
display formula as an M comment, and an expression using
several single-character variables that have routine-specific
definitions. The example is an extrinsic function for the well­
known loan amortization problem. Error-checking code has
been omitted to shorten the example:

AMT(P,I,N) ;;Equal Payment Amount
;;\begin{mweb} \[A=iP\frac{(l+i)An}
{(l+i)An-1} \] \end{mweb}
Q I*P*((l+I)**N/((l+I)**N-1))

Corresponding to these three lines, the code reader generates
the following LATEX source code (spacing and line breaks
are verbatim):

\subsection*{AMT}
\begin{verbatim}
AMT(P,I,N) ;;Equal Payment Amount

\end{verbatim}
\par{\bf Command 1: }\vspace{-.lin}
\begin{verbatim}
;;Equal Payment Amount
\end{verbatim}\vspace{-.lin}
Semicolon denotes comment.
\subsection*{AMT+l}

\begin{verbatim}
;;\begin{mweb} \[A=iP\frac{(l+i)An}{(l+i)An-1} \]
... \end{mweb}
\end{verbatim}
\par{\bf Command 1: }\vspace{-.lin}
\begin{verbatim}
;;\begin{mweb} \[A=iP\frac{(l+i)An}{(l+i)An-1} \]
... \end{mweb}
\end{verbatim}\vspace{-.lin} \[
A=iP\frac{(l+i)An}{(l+i)An-1} \]
\subsection*{AMT+2}

\begin{verbatim}
Q I*P*((l+I)**N/((l+I)**N-1))
\end{verbatim}
\par{\bf Command 1: }\vspace{-.lin}
\begin{verbatim}
Q I*P*((l+I)**N/((l+I)**N-1))
\end{verbatim}\vspace{-.lin}Quit returning {\em
interest\/} multiplied by {\em principal\/}
multiplied by ((1 plus {\em interest\/}) raised to
the power {\em number of payments\/} divided'by ((1
plus {\em interest\/}) raised to the power {\em
number of payments\/} minus 1))

24 Al COMPUTING

Compiling this source produces:

AMT
AMT(P,I,N) ;;Equal Payment Amount

Command 1:
;;Equal Payment Amount

Semicolon denotes comment.

;;\begin{mweb} \[A=iP\frac{(l+i)An}{(l+i)An-1} \]
... \end{mweb}

Command 1:

;;\begin{mweb} \[A=iP\frac{(l+i)An}{(l+i)An-1} \]
\end{mweb}

AMT+2

Q I*P*((l+I)**N/((l+I)**N-1))

Command 1:

Q I*P*((l+I)**N/((l+I)**N-1))

means quit returning interest multiplied by principal
multiplied by ((1 plus interest) raised to the power number
of payments divided by ((1 plus interest) raised to the power
number of payments minus 1)).

It might be argued that the example's docuwentation is exces­
sive-do we really need to be told that a comment is a com­
ment? The example code is described so completely that even
a nonprogrammer could figure out what it is doing. Remem­
ber, however, that excessively documented code is not the
most common cause of maintenance problems.

Robustness
Routine tools such as the M Code Reader conform to lan­
guage attributes in effect at the time the application is written.
The present application is written for the 1990 ANSI stan­
dard. The M programming language, of course, continues to
evolve. Changes to the language that are highly congruent
with existing elements (for example, adding a new intrinsic
function) are easily accommodated. Major changes to the
programming language would require modifications to the
code reader, as they would other M routine tools.[10] The M
Code Reader has been tested on old code and new, applica­
tions programs and operating system utilities; and it success­
fully documents itself. The latter feat is a torture test of the
code reader's ability to avoid confusing Mand TEX-

Continued on page 26

September 1994

Generated TEX source lines are usually less than 60 charac­
ters in length. When translating complex M expressions in
verbose mode the reader can construct intermediate strings
exceeding the pre-1994 standard maximum length. Recent
M implementations do not have a problem with strings longer
than 255 characters.

z commands are read "implementation-specific command."
The interpretation does not distinguish different z com­
mands. $Z functions are returned verbatim. The user may add
$Z functions to the INTRINSIC FUNCTION file, along with
appropriate definitions, if desired.

Punctuation in the code reader's output is less than satisfac­
tory. There are several reasons for this. Expressions are
parsed recursively, and the code reader does not know where
it has been or where it is going. Primitive punctuation rules
are used. For example, command post-conditional expres­
sions are written as parenthetical phrases, command, if condi­
tion, and so on, even if no argument follows. Lists are con­
joined using and in most cases, e.g., N x, Y, z become "new
X and Y and Z." Multiple arguments of GOTO (post-condition­
alized) are rendered, "goto X, if condition, else goto Y, ... "

The code reader takes a relaxed view of spacing before M
commands (any number of spaces is okay), and keeps track of
structure level in block structured segments. Structure level is
not presently used in formatting, but might be used in a future
revision.

Parentheses are problematic to interpret. It is difficult to con­
struct a natural reading for an expression involving nested
parentheses, without introducing ambiguity. The code reader
avoids this problem by preserving parentheses in the transla­
tion. Therefore, the human reader should not ignore paren­
theses in the output.

User-Selectable Parameters
The M Code Reader was originally conceived to translate a
single line of M code into ordinary language. As the project
developed, numerous ideas occurred which seemed to de­
mand inclusion. Some of these became user-selectable pa­
rameters. There are three degrees of verbosity: normal, VER­
BOSE, and VVERBOSE. The user may elect to analyze one
line of code, or an entire routine, producing either plain text
output or TEX (LATEX). At the beginning of the analysis
of each code line, the original source is reproduced exactly
(except for line wrap). A selectable parameter determines
how white spaces are displayed. If SHOSPACE is defined,
s Y=X becomes SLJY=X, and so forth. Another parameter,

26 M COMPUTING

MUL TUNE, if defined, suppresses output of the line refer­
ence and verbatim source in a \begin{mweb} . . . \end{mweb}

group.[11]

The code reader, unlike (\DIM, or (\%INDEX, is not a syntax
checker. It is designed to document and assist in understand­
ing working code, not for debugging. Syntactically flawed M
code will normally produce an (uninformative) error message
from the code reader. Results in this case are unpredictable,
however.

Try reading aloud a line of M code. No doubt there are as
many styles of sounding Mas there are M programmers. I
asked three programmers to read aloud s Y=X and got three
different responses. Purists might object to using keywords
in places where they don't appear syntactically, for example,
"if' to preface a post-conditional. Explaining to human be­
ings what a program is doing requires greater flexibility in
the use of language than the rigorous context of actual pro­
gramming permits.

The M Code Reader may be viewed as a first approximation
to automated program explication, or as a form of routine
documentation. As conceived, the tool should be most useful
for analyzing small code segments, such as a single line or
routine. Clearly, improvements are possible, and environ­
ment-specific interpretive constructs could be added to the
reader's inventory. It remains to be demonstrated whether
this tool will prove useful in maintaining practical M applica­
tions. \;.; M

W. Lloyd Milligan, Ph.D., has been with the Charleston, South Caro­
lina, VA Medical Center, and is now consulting on M. You may reach
him at 136 Sparrow Drive, Isle of Palms, SC 29451 or use his e-mail
address lmilligan@delphi.com.

Endnotes
1. This paper, originally published in The Computer Journal, May
1984, is reprinted as chapter 4 in Knuth's book (see note 2).
2. D.E. Knuth, Literate Programming. (Stanford, California: Center
for the Study of Language and Information, Leland Stanford Junior
University, 1992).
3. The need for improved clarity of exposition in programming had been
recognized at least ten years before Knuth's 1984 paper. Kernighan and
Plauger write, for example, " ... it is more important to make the pur­
pose of the code unmistakable than to display virtuosity." See B. W.
Kernighan and P .J. Plauger, The Elements of Programming Style, Sec­
ond Edition (New York: McGraw-Hill, 1978).
4. WEB source files combine programming language and descriptive
text in a single structure. WEB programs are then separately precom­
piled by "TANGLE" and "WEA VE" to produce programming lan­
guage source code (Pascal, in the original implementation) and TEX
source code, as output.

September 1994

5. TEX is a trademark of the American Mathematical Society. A variety
of TEX implementations including PC versions are readily available.
For more information contact the TEX User's Group, phone 401-751-
7760.
6. L. Lamport, LATEX User's Guide and Reference Manual, (Read­
ing, Massachusetts: Addison-Wesley Publishing Company, 1986),
242.
7. K.M. Schell, "GrowYourOwnMProgrammer," MComputing, 2:1
(February 1994), 34-39.
8. Not all variables are variable. As an interpreted language, M does
not include symbolic constants as a defined type. Constant-valued vari­
ables, such as U for up-arrow, are a common convention.
9. Multiline TEX source comments must begin on a line that is not
remotely referenced, i.e., not an entry point.
10. MDC currently is considering an enhanced pattern-match operator
that would use regular expressions. The change would be backwards
compatible; however, the code reader would have to be modified to
parse pattern expressions.
I I. The strings \begin{mweb} ... \verb+\end{mweb} are not TEX
commands-they are scanned and removed, by the code reader. Use
of the keyword mweb is not meant to imply any connection to the Mod­
ula-2 version of WEB.

""'I.

Envision A Bright And Prosperous
Future!

The field of needed M Technology expertise
is vast--

*Information Systems Departments *Training
*Sales *Marketing *Research & Development

*Human Resources

When you are looking for a job, let your MTA
membership work for you --

Use the JOB REFERRAL SERVICE
When you are looking for the right job candidate,
let MTA help! We have *entry level *mid-level

*senior level personnel on our
list right now!

Since June we have added 25 new employees
and 10 new employers to our service.

Contact MTA at
301-431-4070 for more information.

MUMPS Office Automation and TOOLS
Data Methods Packages feature easy integration with one another and with your MUMPS applications.
Immediate links to major packages are also provided including FileMan, MailMan, Kernel and others.

WORD MANAGER TM

FORMS MANAGER TM

SCRIPT MANAGER TM

CALC MANAGER TM

REPORT GENIE TM

GRAPH MANAGER TM

VIEW MANAGER TM

MEDICAL DICTIONARY

A full-featured word processor with spelling, powerful formatting and numerous
features for all types of documents.

A complete forms design, data entry, editing and printing package. A front-end
to applications packages including FtleMan.

A total medical transcription solution featuring glossaries, medical dictionruy,
and sophisticated management functions.

A complete spread-sheet package with all the features and functions of popular
PC based packages.

A flexible, powerful and easy-to-use report generator with three different interfaces
to flt every users needs.

Business and scientific graphical package supporting many printers and plotters.

1bis package features: Online free-text search.view and print functions, with an intuitive
interface combined with powerful features.

A complete medical diction.uy - compatible with our software or yours.

PROGRAMMERS AND RESELLERS Data Methods products are also available as functional modules for programmers
and in quanitles for resellers. Special license arrangements and complete technical support provide an easy, low-cost
path to full integration with your MUMPS software.

Data.Methods
September 1994

Data Methods Incorporated
63 North Broadway
Nyack, New York 10960-2636
(914) 353-2000
(914) 358-6456 FAX

M COMPUTING 27

