
PLATFORM
INTEROPERABILITY

Language Extensions to ltnprove
the Readability of M

by Lloyd Botway

Introduction
M gets more powerful with each new version of the standard.
Many vendors' Z-extensions gradually evolve into new lan
guage features. MDC has incorporated extensions to the lan
guage, bringing it more into the mainstream as it adopts ideas
and constructs from other programming languages. Still, M
retains its own flavor and style that wins fanatic adherents
and makes just as many fanatic enemies.

As a veteran of twenty years of development with Mand other
languages, I applaud the evolution of the language. But com
fortable as I am with M coding, I am bewildered and frus
trated by the lack of certain constructs that other languages
take for granted.

Current works on software engineering stress that mainte
nance consumes two-thirds of the cost and life cycle of a soft
ware product.[1] For code to be maintainable (assuming it
did not come from a code generator), it has to be readable.
For code to be readable it must, to the greatest degree possi
ble, reflect the meaning intended by the programmer.

Note that readable does not necessarily imply "few grammat
ical constructs." Adding new features to M certainly compli
cates the language for interpreter writers, but may make it
easier to express higher-level ideas. Some languages are
grammatically extremely simple but achieve that simplicity
at the cost of readability, such as LISP, or length, such as an
assembly language.

Consider this example from the current M language. Ask
yourself, What is good or bad (readable or unreadable) about
writing a loop in the following way?

SET count=l
loop DO process(array(count))

IF count<lO SET count=count+l GOTO loop

This is legal M code, but we normally do not write this way
because there already is an automatic looping mechanism in
M. The FOR command gives us a higher-level construct by

10 Al COMPUTING

which to express the idea that a loop is taking place. The
lower-level, more atomic SET and GOTO commands do not in
stantly convey this meaning to the reader. By high-level I
mean referring to a service or function by simply naming it
(and possibly giving parameters). By low-level I mean refer
ring to the details of implementation of the service or func
tion. Here we can consider FOR to be the name of a service
("give me a loop"), and the beginning, incrementing, and
ending values to be parameters passed to that service.

Suppose a programmer, upon being told to "use FOR instead"
had written the following:

SET count=l
FOR DO QUIT:count=lO SET count=count+l
.DO process(array(count))

Here the GOTO was eliminated, but the manual counting was
not. This is definitely a higher-level expression of the loop.
Nevertheless, SET, IF (or post-conditions), and GOTO state
ments do not contain as much meaning as the single FOR state
ment equivalent:

FOR count=l: 1: 10 DO process (array (c'5unt))

A by-product of using a higher-level service should be that
less code needs to be written. This may not always be the
case in terms of actual byte count, but will usually happen.
What is more important, using a higher-level service should
make the code easier to read, because the meaning of the code
should jump out at the reader.

One way to express meaning in a program is by means of data
types or classes. Arguments have been presented elsewhere
concerning whether M is a type-free or single type lan
guage. [2] I am a proponent of type declarations and (in an
interpretive environment) run-time checking of type viola
tions. The work in progress includes a description of how
such features might be added to M. Here, however, I will
focus on readability and semantics.

The main point of this article is to plead for programmers to
write (and managers to insist upon) M code that is legible,
meaningful, clear, self-documenting, and easily maintain
able. Whether using today's standard M, particular vendors'
extensions, or tomorrow's enhancements (possibly including
suggestions from this article), we can do our part to alleviate

September 1994

the software industry's maintenance crisis by demanding
readable programs. Programs should reflect the meaning,
rather than the mechanics, of the task.

This article outlines some straightforward language exten
sions that have the simple goal of enhancing readability. With
only a few exceptions, these extensions can be implemented
right now by means of a precompiler. Such a compiler is un
der construction. The remainder of this article is written
mainly as if the proposed changes are already part of the lan
guage.

This is part of a larger work-in-progress that defines a porta
ble object-oriented system based on and translatable to Stan
dard M. Readers interested in object-oriented techniques for
the time being may consult the works of Dymond, Nelson,
Wiechmann, and Goodnough, which appear as references for
this article.[3,4,5,6]

ENDDO
-'.'\

The command ENDD0 provides an alternative to dot structure.
We use it to terminate an argumentless DO. Indentation may
be used for readability; it is optional, but strongly encour
aged. ENDD0 has no arguments. For example:

FOR i=l:1:10 DO
SET a(i)=b(i)+c(i)
DO Aroutine
FOR j=l0:10:100 DO

SET d(i,j)=d(j,i)
ENDD0

ENDD0

ENDD0 may occur anywhere a legal command may occur.
Commands between DO and ENDD0 do not have to be indented.
Thus, the following rewrite of the code shown above is legal
(but not as readable):

FOR i=l:1:10 DO
SET a(i)=b(i)+c(i)
DO Aroutine
FOR j=l0:10:100 DO
SET d(i,j)=d(j,i) ENDD0 ENDD0

The precompiler would assume that lines following a line
containing an argumentless DO, which do not start with a dot,
are under the control of that DO. The range of the DO will be
delimited by a matching ENDD0. If one of the ENDD0 commands
were accidentally omitted from the loop above, M would
have to interpret the remaining ENDD0 as terminating the inner
FOR loop. Instructions beginning at line NEXT would still be
in the outer loop (probably not the effect the programmer in
tended). Here we are definitely relying on some precompil
ing. Some readers may feel this is counter to the spirit of a
true interpreter, but I think that the D0-ENDD0 construct is no
different from a long expression in parentheses.

September 1994

Justification:

• ENDD0 more clearly delineates the end of control of the argu
mentless-Do.

• White space may be used instead of dots. This is the first of
several changes which move away from M's line-oriented
nature and move toward a syntax in which white space may
be used more freely. I favor this idea not because it is popu
lar in other languages, but because it is more readable.

FOREACH
F0REACH expresses the most frequently used kind of loop in
M with a terse syntax. It is closely related to FOR with or with
out an argument: it performs a loop while hiding details of
its implementation.

F0REACH implements a $ORDER loop through a subscripted
variable (local or global). Most M applications take advan
tage of the nature of sparse subscripts and, as a result, are
required to use this mechanism for traversing data structures.
F0REACH captures this idea in a single easy-to-read command,
as follows:

F0REACH Ag(id) DO
F0REACH Ag(id,sub) DO

WRITE !,id,?10,sub
ENDD0

ENDD0

This is equivalent to:

SET id=""
FOR SET id=$0RDER(Ag(id)) QUIT:id="" DO
SET code=""
.FOR SET code=$0RDER(Ag(id,sub)) QUIT:sub="" DO
.. WRITE ! , id,? 10, sub

The argument of F0REACH must be a subscripted variable. The
command loops on the last (right-most) subscript of that vari
able in (left-to-right) $ORDER sequence, beginning and ending
with the empty string. (Often the programmer might not care
about the order in which the variable is traversed, as long as
all subscript values were fetched.)

We might also want a way to initialize a beginning or ending
subscript other than the empty string. A syntax such as:

F0REACH Ag(id) FROM exprl TO expr2

might work, but if we are going to allow variable starting or
ending points, we might as well use the FOR syntax:

F0REACH Ag(id)=exprl:expr2

which at least is more familiar to M programmers. Note that
this is not the same as a FOR command, in which the $ORDER
function would have to be used explicitly.

., COMPUTING 11

QUIT exits a FOREACH loop just as with FOR.

Justification:

• Initializing a variable to the empty string and $ORDER-loop
ing through an array is a common phenomenon in M.

• FOREACH expresses what the programmer is doing, not how
it is being done. (In the spirit of object-oriented program
ming, FOREACH is an abstract method rather than a specific
implementation of the method.)

IN
An IN argument may be used in a FOR argument list. It auto
mates looping through each character of a string.

Here is the format:

variable IN expression

For example:

FOR x IN "ABCDE" DO

is equivalent to:

FOR x="A", "B", "C", "D", "E" DO

The intent would be that if expression evaluates to the empty
string, the FOR loop does not execute.

Just as other FOR arguments, IN may be used in a series of
arguments, as:

FOR x=l:1:10,x IN strng,x="Sam" DO

The interpreter will recognize that IN is not a command fol
lowing the FOR statement but rather one of the arguments.

Control characters could be part of an IN-argument, just as
they can be part of any string. One of M Computing's editors
made the interesting suggestion (with which I concur) that,
to permit arguments of arbitrary length, a Pascal enumerated
type might be more appropriate. This would allow, for exam
ple, the construct FOR x IN Northwest, where Northwest is
an enumerated data type containing a list of two-letter state
abbreviations.

Justification:

• IN implies set membership. Its intent is easier to grasp than
if the set (string) members were listed separately.

PIECEOF
A PIECEOF argument may be used in a FOR argument list. It
automates looping through each piece of a string. It assumes
that there is a single delimiter which, by design agreement,

12 Al COMPUTING

is used application-wide, and that this delimiter has been
specified in the new "$PIECE(systemexpr, "DEFAULT") struc
tured system variable (discussed more below).

The format is:

variable PIECEOF expression

For example:

FOR x PIECEOF "AB,CD,EF" DO

ENDDO

is equivalent to:

SET string="AB,CD,EF"
FOR i=l:l:$LENGTH(string,",") DO

,SET x=$PIECE(string,",",i)

ENDDO

This assumes that the system default delimiter has been set
up as:

A$PIECE($SYSTEM,"DEFAULT")=","

The default delimiter may be temporarily overridden as
follows:

FOR x PIECEOF "ABCDEF":"I" DO

Here, "I" replaces the default comma. This is not a pretty
notation. It would be more readable by making it more En
glish-like, at the expense of terseness of coding. For exam-
ple, we might have: \:.c

FOR x PIECEOF "ABCDEF" WITH "I" DO

but this is wordy. Suggestions are welcome here!

The structured system variable "$PIECE is.intended to contain
default $PIECE delimiters for use by other language con
structs. System-wide default piece delimiters may be overrid
den by application-specific default delimiters. I say delimi
ters in the plural, because many applications provide for
pieces within pieces, and so on. This, and the fact that an
application may need to override the system, means that
"$PIECE can benefit from a hierarchical substructure.

The precise syntax of the subscripts needs to be decided, but
should follow the general plan now used for such structured
system variables as "$CHARACTER and "$SYSTEM. I would ex
pect the structure to look something like:

A$PIECE(systemexpr,"DEFAULT") =

system default delimiter

A$PIECE(systemexpr,"APPL",application,l)

application major delimiter

September 1994

A$PIECE(systemexpr,"APPL",application,2)

application subdelimiter

and so forth. Here, systemexpr is the current system identi
fied by $SYSTEM, and application is a string determined by the
application system designer. (Do we also need a $APPLICA
TION system variable?)

As an example of the use of /\$PIECE, the American Society
for Testing and Materials (ASTM) standard 1238, a data for
mat governing clinical records, recognizes three levels of de
limiter. At my workplace we use I for the major delimiter, &

for the next, and/\ for the lowest level. We would write:

SET /\$PIECE(system, "APPL", "ASTM", 1)="I"
SET A$PIECE(system,"APPL","ASTM",2)="&"
SET A$PIECE(system,"APPL","ASTM",3)="/\"

Justification:

• Looping through pieces of a string, on a standard delimiter
for the application, is a frequent operation.

"'.\

• Certain standard data formats (for example, ASTM 1238
and HL7) rely on piece, subpiece, and subsubpiece delim
iters.

UNTIL
This is another FOR argument. It is popular in other languages
and reflects the actual logic of a loop.

The format is:

UNTIL condition

It tests condition, continuing the loop if false and stopping
(or using the next argument of the FOR command) if true. Here
is an example:

FOR UNTIL a>b DO

If a >b initially, the loop is not performed at all. Otherwise,
when a >b, the loop stops. As mentioned above for IN, the
interpreter (or precompiler) will recognize that UNTIL is not
a command following the FOR statement but rather one of the
arguments.

By varying the position of UNTIL in the FOR statement, the
condition specified can be tested either before or after the
body of the loop is executed. Thus,

FOR DO UNTIL a>b

would execute the body first. Note also that a case could be
made for defining UNTIL condition to means precisely QUIT:
condition, and allowing itto be used anywhere (not just after
a FOR command).

September 1994

MIIS™

POLYLOGICS

MUMPS

We turn running MIIS programs into running
MUMPS programs. Efficiently, with maximum
accuracy and minimum down-tims.

MIIS in, MUMPS out. That's all there is to it.

We specialize in MUMPS language conver
sions. We also convert MAXI MUM PS, old
MIIS, BASIC and almost anything else into
standard MUMPS. Polylogics will be there with
experienced project management, training
and documentation.

So, give us a call today. Ask for a free demon
stration on a few of your programs. That's all
there is to it.

POLYLOGICS CONSULTING
136 Essex Street
Hackensack, New Jersey 07601

Phone (201) 489-4200
Fax (201) 489-4340

MIIS is a trademark of Medical Information Technology. Inc.

M COMPUTING 13

Justification:

• Looping until a certain condition obtains is a natural logical
construct. It has the same effect as QUIT: condition, but is
more expressive of the programmer's intent.

WHILE
This is another FOR argument. It is the inverse of UNTIL.
Format:

WHILE condition

It tests condition, continuing the loop if true and stopping if
false. For example:

FOR WHILE c<d DO

If c<d is false initially, the loop is not performed at all. When
c<d, the loop is executed. Otherwise, it stops. Again, the
interpreter (or precompiler) will recognize that WHILE is not
a command following the FOR statement but rather one of the
arguments.

As above, WHILE c<d could be defined to mean QUIT: c'<d,
freeing it from the confines of the FOR statement. Also, the
WHILE could be put after the DO, having the effect of executing
the body of the loop first, regardless of the value of the stated
condition.

Justification:

• As for UNTIL, WHILE is a natural logical construct. It has
the same effect as QUIT: 'condition, but is more readable.

FORLEVEL
The system variable $FORLEVEL (abbreviation $FORL) is a nest
ing count describing how many FOR or FOREACH loops deep
the code is. Initially, $FORLEVEL is zero. It is incremented by
one (by the interpreter, not the programmer) for each FOR or
F0REACH executed. It is decremented upon exiting the corres
ponding loop. It is intended to be used together with the sys
tem structured "$FOR COUNT, described next.

For example (assume no other FOR-loops are in control):

FOR i=l,2 DO
WRITE $FORLEVEL, 11 11

FOR j=3,4 DO
WRITE $FORLEVEL, 11 11

ENDDO
ENDDO

This generates:

1 2 2 1 2 2

Justification:

• This variable is needed as an index to the structured system
variable "$FORCOUNT, described next.

14 Al COMPUTING

$FORCOUNT
This is both a system variable and a structured system vari
able. The abbreviation is $FORC. As a system variable,
$FORC0UNT tells which numbered execution of the innermost
FOR or FOREACH loop is underway.

As a structured system variable, "$FORCOUNT tells which par
ticular numbered execution of any nested FOR or FOREACH loop
the program is in. It assigns to each execution of a loop an
integer, beginning with one and incrementing by one for each
execution. Each FOR or FOREACH loop has its own counter in
"$FORCOUNT($F0RLEVEL).

Use $FORCOUNT to avoid having to initialize and increment
your own loop counter in situations in which you otherwise
would not use a counter. Prime examples are FOREACH, WHILE,
and UNTIL.

An example, using the (unstructured) system variable
$FORCOUNT (no nesting), is:

FOREACH "g(sl) DO
_ WRITE ! , $F0RCOUNT, 11 11

, sl
ENDDO

This writes a list of all first-level subscripts of "g, numbering
each subscript from one to the number of subscripts found.

This example uses $FORCOUNT, but this time it is used with
nesting:

FOREACH "g(sl) DO \a..

WRITE $FORCOUNT, 11 11 ,sl
FOREACH "g(sl,s2) DO

WRITE ?lO,$FORCOUNT, 11 11 ,s2, !
ENDDO

ENDDO

Suppose "g has the following nodes defined: "g(11 A11
,

11 A11
),

"g(11 A11
,

11 B11
), "g(11 A11

,
11 C11

), "g(11 Z11
,

11 X11
), and "g(11 Z11

,
11 Y11

).

The above loop writes:

1 A 1 A
2 B

2 Z
3 C
1 X
2 y

The structured system variable "$FORCOUNT would be used
when, in an innermost loop, a programmer wants to access
the count for higher-level loops. The previous example could
be:

FOREACH "g(sl) DO
FOREACH "g(sl,s2) DO

WRITE !,"$FORC($FORLEVEL-l)
WRITE 11 11 ,sl,?lO,$FORC, 11 11 ,s2

ENDDO
ENDDO

September 1994

(The output of this list is formatted slightly differently from
the one above, but the idea is the same.)

Justification:

• Using FOREACH, the programmer describes a loop through
subscripts without specifying the number, order, or search
mechanism. If the programmer needs to know the number
of times a loop is performed, such as to count the subscripts
of an array, that value is available with /\$FORCOUNT.

ELSE, ELSEIF, and ENDIF

I have always been perturbed by the lack of a true logical
ELSE in M. In all other languages, ELSE depends only on the
condition stated in the corresponding IF, and not on possible
intervening instructions. M couples ELSE to $TEST and decou
ples ELSE from IF. Since other commands can affect the value
of $TEST, the decoupling from IF can potentially cause prob
lems with program logic.

This new syntax for IF, backwards-compatible with the cur
rent definition, has the following features:

• The new command THEN (no arguments) signals this new
version of the IF command. THEN must be paired with the
new command END IF. THEN must occur on the same line as
its corresponding IF, immediately after the IF-condition.
A lack of a THEN command means that the original standard
IF is being used, and that any following ELSE is to use $TEST
as usual.

• The new command ELSEIF can test an alternative condition.
It has the obvious meaning. It must be used in conjunction
with THEN.

• ELSE, if used in conjunction with THEN, is a true logical
"else." Commands following it are executed if the IF condi
tion, and any following ELSEIF conditions, were false.
Nothing executed as a result of a true IF or ELSEIF condition
can make the ELSE execute.

• Probably the most heretical feature is that THEN signals that
line boundaries may be ignored. The range of the IF com
mand is delimited by the corresponding END IF.

General layout of the new IF command:

IF condition THEN ...

ELSEIF condition THEN

ELSEIF condition THEN

ELSE
ENDIF

September 1994

If-THENS may be nested to any depth, and retain their logical
cohesion. An IF without a THEN terminates its effect at the
end of its own line as usual.

Can we have an ambiguous case? Consider:

IF condl THEN ...

IF cond2 SET a=3; a "normal" IF-command:
ELSE SET a=4; to which IF does this apply?

ENDIF

I suggest that the interpreter simply assume that ELSE applies
to the most recently-issued IF command. What this should
mean in practice is that normal IF commands (without THEN)
won't be used, because of the danger associated with them
of other commands changing the value of $TEST. ELSE is now
overloaded, in the sense that it has two different meanings
depending on whether the most recently executed IF had a
THEN or not. There is, however, no ambiguity.

Justification:

• IF' THEN' ELSE, and ELSEIF bring Min line with true logical
execution of conditions, as exemplified by other lan
guages.

• ELSE and ELSEIF allow expression of program logic in a
more natural way.

• Lifting the restriction that an IF applies only to the line
it is on provides greater freedom of expression and better
documentation. A routine is easier to read if it can be made
to read more like natural language.

CASE
The action of a CASE command is similar to that in other lan
guages. It requires a new case expression syntax, which I
have expressed as:

expression:

A case expression may occur anywhere on a line, but it must
be the first thing on a line. (Perhaps it should be a new kind
of line label.) It serves to introduce each new case.

General structure:

CASE [optional-argument]
exprl: commands ...

expr2: commands ...

ENDCASE

Here again, line breaks are not significant. The action is simi
lar in intent to $SELECT. In the argumentless form, each case
expression is evaluated in tum as a truth value. The first case

M COMPUTING 15

expression that is true has its commands executed. Only the
first true case expression will take effect. If no case expres
sions are true, no commands are executed. Example:

CASE
choice="I": DO Ainquiry
choice="R": DO 11 report
choice="Q": QUIT
1: DO Abad

ENDCASE

CASE with an argument uses the value of the argument to de
termine which case to use. Here, each case expression is eval
uated and compared to the value of the argument expression.
The first one which matches is used. As before, if no case
expressions match, no commands are executed.

Example:

CASE choice
"I": DO Ainquiry
"R": DO Areport
"Q": QUIT

ENDCASE
IF $CASE="" DO Abad

Here it is useful to have a system-maintained variable $CASE
(see next section) whose value is that of the case expression
that was used, if any.

It is also useful to have an otherwise case, in the event none
of the case expressions matched the CASE argument. We need
either a special key word or a symbol indicating this case. My
proposal is based on the fact that we have already reserved the
colon to separate the case expression from the rest of the line.
Designate the otherwise case by a colon by itself, as in:

CASE choice
"I": DO Ainquiry
"R": DO 11 report
"Q": QUIT
: DO Abad

ENDCASE

Using a symbol is less readable than using a key word, but
the convention at least has the advantage of being clean (no
new key words or symbols are introduced).

Note also that the intent of this structure is to ignore line
boundaries. Each case's commands extend to the next case
expression or to the ENDCASE command, whichever comes
first.

Justification:

• This provides a structure which is much easier to read than
a sequence of IF and ELSEIF commands. The conditions
controlling each case are explicitly stated and stand out.

16 6' COMPUTING

$CASE
This system variable retains the value of the CASE expression
chosen. If no cases matched the CASE condition, $CASE is the
empty string. If the argumentless CASE was used (each case
expression has a Boolean value), $CASE will be true if any
case was chosen and false otherwise.

Justification:

• Without automatic retention of this information by the sys
tem, the programmer would have to initialize and manage
a variable to record it.

Conclusions
These enhancements have been offered purely as suggestions
to improve code readability. Industry experience shows that
readable code leads to a reduction in logical errors and an
increase in ease of program modification.

Many of these extensions could be provided right now by
means of a precompiler. CASE, ELSEIF, ENDDO, ENDIF,
FOREACH, the new ELSE command, and the new FOR arguments
IN, PIECEOF, UNTIL, and WHILE are easily translatable into
standard M. Of course, the resulting (translated) code may
not look very nice.

Less easily implemented by precompiling are the new system
variables. Lacking a system-embedded way to deal with
these, they would have to be implemented in agreed-upon
globals and local variables. But a precoinpiler could insert
code which produced the same effect as $CASE, $FORCOUNT,
and $FORLEVEL.

Obviously, a great many other suggestions could be made to
enhance M syntax and to incorporate abbreviation mecha
nisms (such as FOREACH). The set presented here is not defini
tive; each could be expressed in alternative ways, and some
may be more important than others. I have many other exten
sions in the works, only a few of which have been described
here. (Others are all for the management and manipulation of
classes, objects, and messages. They do not affect the "base
syntax" of M as do the above examples.) I am more interested
in improving our programming style than in adopting any
particular conventions.

Finally, why am I not simply writing this article as a submis
sion to the MUMPS Development Committee? It is because
I would like us all, users and vendors alike, to consider what
we can do to alleviate the maintenance bottleneck. One way
to do this is to make M the most legible and expressive lan
guage it can be. I hope the reader takes these suggestions in
that spirit. •

Continued on page 18

September 1994

Due to business
openings. These po
analysis in support of
pretation of user requir
specifications. Significa
commitment to quality

Requirements include
1-2 years of demonstr
a business or healthcar
packages, SAS and 4GL
M Technology (MUMPS)

As a part of our team, y
cess. We offer an excell
fax or send your resum
SciCor Inc., 8211 SciCor v
2985; Fax: {317)273-7977. E
Action Employer IW.

ER

immediate
g and information

he company, inter
ation of technical

users and a strong
on is essential.

any discipline and
proficiency within
perience with PC
trated proficiency in

1 role in SciCor's suc
efits package. Please
Human Resources,

polis, Indiana 46214-
p ortunity/Affirmative

s;c::: ICC::,R
Right ► From ► The1,start

8211 SciCor Drive, Indianapolis, IN 46214-2985

MTA-Europe Prepares for
19th Annual Conference
Finishing touches are now going on the 19th annual con
ference of the M Technology Association-Europe, which
will take place in Luxembourg November 7 through 11,
1994. "The Key to Client/Server Technology" is the theme
of the event with papers and tutorials on server technology
and solutions, client technology and solutions, client/
server architectures, and financial and medical applica
tions. Concurrently, an exhibition of the latest M Technol
ogy from manufacturers, vendors, dealers, and developers
is scheduled. A gala dinner at the Chateau Bourglinster is
the highlight of the social program.

The meeting will take place at the Pare Hotel Luxembourg,
which is located on Route d'Echtemach, L-1453 Luxem
bourg. Phone: 352-43-56-43; fax: 352-43-69-03.

For conference information, contact Mr. Pol van de Perre,
MTA-Europe, 83 AvenueE. Mounier, B-1200 Brussels,
Belgium. Phone: 32-2-772-92-47; fax: 32-2-772-72-37.

18 Al COMPUTING

This paper was prepared with the cooperation of National Health Labo
ratories Incorporated (NHL), La Jolla, California. Many thanks to
MT A member and MDC participant Darrell Simmerman, of NHL, for
his suggestions and critical feedback. My thanks also to the reviewers
and editors for their suggestions and comments.

Lloyd Botway is a director of information systems for National Health
Laboratories in Nashville, Tennesee. He is also a doctoral student in
computer science at Vanderbilt University. His research interests in
clude database theory, artificial intelligence, and the construction of
object-oriented languages. His phone number is 615-399-0713. Or, he
can be reached on Internet using botwaylf@vuse.vanderbilt.edu.

Endnotes
1. S. Schach, Software Engineering (Boston, MA: Richard D. Irwin,
Inc., 1993).
2. T. Salander, "Datatypes: Strong, Weak and Imaginary," MUG
Quarterly 20:2 (1990):43-52.
3. A.M. Dymond, "Object Programming Concepts in Expert System
Knowledge Representation and Control Structures," MUG Quarterly
19:1 (1989):90-92.
4. M.L. Nelson, "AnObject-OrientedTowerofBabel," MUMPS Com
puting 22:4 (1992):41-47.
5. T.L. Wiechmann, "ObjectOrientedProgrammingandMUMPS:Tu
torial" (MUMPS Users' Group Meeting 1989).
6. T.L Wiechmann and J. Goodnough, "EsiObjects: An Object
Oriented Application Development Environment," MUMPS Comput
ing 22:4 (1992):30-37 .

. . · .· •··' . · • ... · .. ·. ·. '.·· .. • ·.····.···i ·/ ,::,: '(,:,,;,:,,:i::·::·:·/ti•··ii,•iii;'/ :· /i'i i!i,i•;,i ii!'.,i:,,,ii, i.•ii
. D.1.~ll.• .. 1ntQ a .. •IQ.,$, . .r:1;n ,life iLVf"World

I 1,/,:;,:" 11 ,,',I

'.·, ,f •·•~tit'·. ,,.,'; ••.:',•',,, .. :/.)•:,i/,'',:':n

··.•y''•

September 1994

