
FOCUS ON
FILEMAN

Program.m.ing Hooks 103
Lookup: Part I

Introduction
This is the third in a series of articles
exploring the use of the programming
hooks available to applications based
on FileMan. For purposes of this se­
ries, a programming hook will be con­
sidered to be any significant point at
which you (a programmer) can insert
M code into the sequence of events
that makes up a standard database ac­
tivity. The programming hook is one
of the most powerful but one of the
least understood features of FileMan.

Much of application programmers'
understanding of these hooks has
come from oral tradition and folklore,
secrets shared over lunch, at conven­
tions, and in phone conversations
with programmers. The goal of this
series is to bring the written and oral
traditions back in synch, to clarify
what these hooks should do, and to
examine the strengths and weak­
nesses of some common coding
tricks.

What Is a Lookup?
This article investigates the hooks
available in FileMan's Lookup mod­
ule. FileMan refers to the standard
process of picking a record in a file as
a "lookup." Although FileMan pro­
vides similar, more powerful features
in the Search module, your users will
usually pick records with the Lookup
module. There are actually two dif­
ferent kinds of lookups.

90 M COMPUTING

by Rick Marshall

General lookups are when FileMan
directly asks the user to pick a record
from a file; this could be for any of a
number of different reasons. For ex­
ample, when a user performs an in­
quiry on a file, FileMan first asks the
user to perform a general lookup on
the file, so FileMan knows which re­
cords to display.

Pointer lookups take place when File­
Man asks the user to enter the value
for a field that happens to be a pointer
to another file. In order to ensure that
the user enters a valid value for the
field, FileMan must actually perform
a lookup on that pointed-to file. The
various characteristics of the field be­
ing edited act as a kind of filter on the
lookup, as we will see when we exam­
ine the programming hooks available
in lookups.

Lookups can have different character­
istics, such as which of the files' in­
dexes can be used to help the users
pick a record. Since the focus of this
article is on programming hooks, we
will cover these distinctions only
where they actually affect the hooks
in question.

Finally, many procedures informally
called lookups are actually composite
activities. For example, any lookup
performed with LA YGO permitted
(in which users may add new entries
to the file) is actually a lookup fol­
lowed by an optional add. Many
LA YGO lookups also prompt the user

to fill in field values, which adds edit­
ing to the composition. In the "Pro­
gramming Hooks" series we will de­
compose these composite calls as
much as possible. So, for example,
our discussions of lookup hooks will
not include adding or editing.

Let's begin our examination of the
lookup hooks.

Special Lookup Routine
(AKA: LOOK-UP PROGRAM or
Special Look-up Program)

Syntax: Free text, 3-6 characters, rou­
tine name, no /\, no line reference,
routine name cannot begin with DI.

"-
Input & Output: same as DIC entry
point.

Creation: LOOK-UP PROGRAM
prompt, EDIT FILE, UTILITY
FUNCTIONS.

Data Dictionary Location:
/\DD(filenumber,0,"DIC").

You may need to write your own
lookup routines to handle an unusual
file. This happens only in very rare
circumstances, because FileMan is
flexible enough to support most stan­
dard variations on its typical struc­
ture. However, if your file is different
enough you may decide that getting
FileMan' s Lookup to support your
file is more trouble than it is worth.

FileMan lets you name a replacement
fornic, which you must then write to

June 1994

perfonn lookups with the same input
and output parameters as DIC. In es­
sence, you must write a black box that
behaves exactly like DIC in every re­
spect, except that it works differently
on the inside, and only applies to a
single file. The calls to DO"DICl'

DQ"DICQ, and FILE"DICN should help
you write it; you will need help be­
cause this is a lot of work.

While this feature is slated for penna­
nent support, we are investigating the
feasibility of retiring it and moving
applications back to DI c. Any users of
this hook should contact the FileMan
development team to discuss it.

The best example of this is the Special
Lookup Routine DPTLK, on the Patient
file. It illustrates both the kinds of cir-

"' cumstances under which someone
might need this hook, and the com­
plexity of the undertaking.

Field Executable Help
(AKA: XECUTABLE 'HELP')

Syntax: M code, 1-245 characters,
checked by FileMan's DIM routine.

Input & Output: none in documenta­
tion (see below).

Creation: XECUT ABLE 'HELP'
prompt, MODIFY FILE ATTRI­
BUTES.

Data Dictionary Location:
"DD(filenumber, .01,4).

You may need to give your users spe­
cial help with some pointer lookups.
The most common way to do this is to
add some additional text to the help
messages usually shown. If the text of
that help is not static, or if the help
you want to display in response to a
user entering a single question mark
will not fit in the nonnal help prompt

June 1994

field (i.e., it's longer than 245 charac­
ters), then you will need to use this
hook.

Whenever the extra help you want to
provide involves more sophisticated
processing, you need this hook. For
example, help systems based around
statistical analysis of the kinds of mis­
takes your users tend to make will al­
ways need this hook. We will look at
some other examples of processed
help below.

When Does
Executable Help
Hook into Lookups?
In general, FileMan will execute this
hook when the user requests help with
the field you place it on. Since most
fields (even the .01) are not involved
in strict lookups, it turns out that there
is only one place where Executable
Help does hook into the lookup pro­
cess. During pointer lookups, your
hook on the pointer field fires off
whenever your users enter question
marks.

FileMan does not execute the Execut­
able Help of the pointed-to file unless
LA YGO is pennitted, and general
lookups without LA YGO don't exe­
cute your hook at all. Also (no real
surprise here), when your pointer
lookups are silent (that is, when they
do not interact with your users), none
of your Executable Help hooks into
the lookup process.

Position
To customize your help display prop­
erly, you will need to consider where
FileMan places the cursor before and
after executing this hook. The follow­
ing example should help illustrate the
sequence. Notice the differences be­
tween ?-help and ??-help. Ihavefilled

in text to help clarify the sources of
the various pieces of help shown. The
Executable Help perfonns no fonnat­
ting of its own; it just outputs a line of
text, so any fonnatting you see comes
from FileMan. This example shows a
pointer lookup from the Musician
field of the Song file, which points to
the Musician field:

MUSICIAN:?

Help Prompt for Song's Musi­
cian (pointer): Answer
should be the name of the musi­
cian who recorded this
song.

Field Executable Help for Song's Mu­
sician (pointer).

Answer with MUSICIAN NAME

Choose from:

AMOS,TORI
ANDERSON ,LORI
BUSH,KATE
MERCHANT ,NATALIE
SHOCKED,MICHELLE
VEGA,SUZANNE

MUSICIAN:??

Field Executable Help for Song's Mu­
sician (pointer).

Field Description for Song's
Musician (pointer): This
field stores the name of the mu­
sician who recorded this
song. Because song titles are
not unique, this field
helps identify the song.

Choose from:

AMOS,TORI
ANDERSON,LORI
BUSH,KATE
MERCHANT,NATALIE
SHOCKED,MICHELLE
VEGA,SUZANNE

MUSICIAN:

Al COMPUTING 91

Formatting
The example above shows that File­
Man will position the cursor at the
start of a new line before executing
your code, and will perform a line
feed and carriage return afterward. In
fact, if you provide no executable
help FileMan leaves a blank line
where it would have appeared. This
means you need to format your text a
little to make it match the flavor of the
surrounding text.

Canned text messages should indent
five spaces to the sixth character.
Since they will be placed differently
in LA YGO lookups and may not flow
directly into or out of the adjacent text
and prompts, you should put a line
feed before and after.

Some terminals will not wrap for you,
but instead will truncate any text be­
yond the right margin, so you must
handle the wrapping of your text. If
your application is developed for a
Kernel environment, you may use the
Device Handler variable IOM to tell
you the right margin width. If your
application lacks Kernel support, you
have several choices. You can take
steps independently to ensure a local
variable will equal the right margin
width, call %ZIS each time to get IOM,
or assume a standard width of eighty
characters. If you choose the last op­
tion, be aware that your text will prob­
ably display incorrectly on some ter­
minals.

How to Avoid Direct
WRITEs: ENADDIOL

MW API, ScreenMan, and client/
server configurations are among the
new computer science technologies
that will bring a low tolerance for
spontaneous READS and WRITES to the
M world. Since the FileMan data dic­
tionaries are littered with direct READS
and WRITES, we have a problem. File-

92 M COMPUTING

Man needs to somehow intercept that
1/0 and redirect it to the appropriate
user interface, but since such activi­
ties bypass FileMan and directly exe­
cute M commands, there is no way to
do so.

Our solution is to introduce tools that
will perform READS and WRITES for the
applications, allowing us to intercept
1/0 whenever it is inappropriate.
READS are not a major problem be­
cause very few programming hooks
perform READ commands, and the
Reader utility has been available for
several years now.

To help solve the WRITE problem,
FileMan version 20 introduced the
Writer: EN"DDIOL. In version 20 this
call simply WRITES the value or array
passed to it, but in version 21 it begins
its transformation into the solution to
the 1/0 problem. When called in a
ScreenMan environment, the version
21 Writer will direct the 1/0 down to
the help portion of the screen, pre­
venting the WRITES from inadvertently
disrupting the interactive portion of
the screen. When called in an envi­
ronment that requires no direct 1/0, it
loads the text passed to it into standard
output arrays, where interface han­
dling tools can then manipulate and

>ZP XHELP2:END

display the text in whatever fashion is
appropriate for the current user in­
terface.

What this means for you as applica­
tion developers is that you need to be­
gin converting your database hooks
from direct WRITES to calls to the
Writer. Doing so in version 20 will re­
sult in no direct change to your hook's
behavior, but will position your files
to make the move forward to graphi­
cal user interface and client/server
compatibility. These are relatively
simple changes for you to make, and
biting the bull~t now will save you
one more piece of work to coordinate
later on when the major work of con­
verting to GUI is upon you. Even if
you plan to leave your application in
scrolling mode in perpetuity, con­
verting to the Writer will allow local
sites to build ScreenMan, MWAPI,
and client/server applications based
around your files.

Executable Help will be one of the
main places where this conversion is
necessary, sinct it usually consists of
WRITE commands. In the box is a be­
fore and after example of the code for
an Executable Help, and how it looks
when executed.

XHELP2 ;Executable Help for File# 3298428.7, Field# 1
W !?5,"Here is your executable help."
W !?5,"I hope you like it.",!
Q

XHELP3 ;New Help for File# 3298428.7, Field# 1
N ZZA
S ZZA(l)=" Here is your executable help."
S ZZA(2)=" I hope you like it."
S ZZA(3)=""
D EN''DDIOL(. ZZA)
Q

>W !,"BEFORE:",! D XHELP2 W !,"AFTER:",! D XHELP3 W !,"NEXT
PROMPT"

June 1994

BEFORE:

Here is your executable help.
I hope you like it.

AFTER:

Here is your executable help.
I hope you like it.

NEXT PROMPT

>

Distinguishing
Between ? and ??

You may want to tailor your Execut­
able Help to respond differently to
different levels of help requested by
the user. For example, you may be
happy with the ?-help, but want to add
something po\\rerful to the ??-help.
Although it has not been documented
so far, a variable is available to help
with this problem, has been available
for a long time, and is even used by
FileMan itself in dealing with this is­
sue. X will equal the user's input, ei­
ther "?" or "??".

Using DQ/\DICQ in
Executable Help
One common trick applications can
use to generate a list of entries to dis­
play, to make the field's help resem­
ble that of a pointer field, is to call the
FileMan utility DQ"DICQ. You will
need to do something like this any
time you want to create a free text
pointer, in which the field must be­
have. to the user like a pointer but must
store the external, free text value in­
stead of the internal record number.
Free text pointers are especially use­
ful wherever you must archive the
current resolved value in case it
changes later, but it has other uses as
well. So, forexample, apointertothe
device file might store "DIREC­
TOR'S PRINTER" instead of "42"
(assuming the Director's Printer was

June 1994

the forty-second entry in the Device
file). Free text pointers are just one
situation in which you might want to
alter the executable help in this way.

In this example, which we will look
at again when we discuss input trans­
forms, our sample file has a free text
pointer field, DEVICE, which re­
cords the name of the device used to
print this monthly report. This field is
a free text pointer to the Device file,
and has an input transform set up to
ensure proper free text field behavior.
To make the field's help behave prop­
erly, we have entered the following
executable help:

N D,D0,DIC,DZ,X,Y
S DIC=11 A%ZIS(l, 11 ,DIC(0)="M",D="B

II

D DQADICQ

Notice the care we are taking to pro­
tect the key variables here; we have
NEwed all the input variables to the
DQ"DICQ call along with the two com­
mon variables X and Y in an attempt
to help FileMan recover from our ex­
ternal call. DQ"DICQ will change a lot
of variables, and being older code for
now it will clean up after itself with
KILLS rather than with NEW com­
mands. This gives it a wide footprint,
and makes it impossible to use in a
hook that requires reentrancy. Fortu­
nately, this use of our Executable
Hook in a pointer lookup does not re­
quire reentrancy, so simply cleaning
up our symbol table with a NEW com­
mand is enough to let FileMan re­
cover from the call.

Using /\DIC, IX/\DIC,
and MIX/\OICl in
Executable Help
For more specialized help similar to
that provided by DQ"DICQ, you may
need to call DIC (or one of its two other
incarnations, IX"DIC and MIX"DICl)
itself; the control it gives you over in­
dexes, screens, and identifiers may be

exactly what you need. In this exam­
ple, the Patient file has a field called
Attending Physician. This field is a
pointer to the New Person file, with a
screen to ensure that the only entries
selectable are medical providers of
some kind. Since the New Person file
also includes nonphysician computer
users, the Executable Help for this
field has been set up to ensure that
only providers are shown when the
user asks for help:

N D,D0,DIC,X
+l S X="??",DIC("S")="I$D(AVA(2

00,""AK.PR0VIDER"",$P(A(Q),U
) , +Y)), $S('$G(AVA(200,+Y , 1111

I"")) :l,DT'>+A(""I".") :1,1:0)
II

+2 S DIC=11 AVA(200,",DIC(0)="EQ"
,D="AK.PR0VIDER"

+3 D IXADIC

By calling IX"DIC, the developer re­
stricted the lookup to an index that
contains only medical providers, and
the input value of "??" ensures that
IX"DIC will provide the correct kind
of help rather than performing an ac­
tual lookup. Notice again the careful
NEwing of the input variables to avoid
disrupting the call outside of this pro­
gramming hook. Similar calls can be
made for the other two DIC variants,
for much the same purpose.

Limitations of 1/0
One drawback to these various DIC
calls you have seen is that they gener­
ate direct I/0. This restricts the files
that use these calls to a scrolling mode
interface. When the Patient file devel­
opers move it forward to a GUI inter­
face, they will need to convert all pro­
gramming hooks that use this kind of
direct I/0 to use tools compatible with
a GUI interface, tools that issue no di­
rect READS or WRITES. As you will see
in the months ahead, FileMan version
21 offers a wide range of tools de­
signed to provide the equivalent fea­
tures of these calls, but in a silent fash­
ion compatible with GUI. Tools such

M COMPUTING 93

as the Lister, Helper, and Retriever
will eventually become common­
place in FileMan programming hooks
as these files move forward techno­
logically.

Alternative:
Prompting Yourself
An alternative to using Executable
Hooks to provide the help you need
for pointer lookups is to prompt the
user yourself. This option offers you
complete control over the interaction,
including the help processing, and
also allows you to intervene in more
lookup situations, since Executable
Help is limited to pointer lookups.
Whether GUI, screen-driven, or roll
and scroll, once your interface has
collected the user's input values, you
can pass them into a silent lookup
call.

Conclusion
Next time we will continue examining
the features and special uses of other
programming hooks available during
lookups. M

Forward your FileMan questions or topics
you would like to see addressed in this col­
umn to the mail group FILEMAN DEVEL­
OPMENT TEAM on the VA's FORUM
system, or write to: V AlSC6-San Fran­
cisco, Suite 600, 301 Howard Street, San
Francisco, CA 94105.

Rick Marshall works at the Seattle office of
VA' s San Francisco Information Systems
Center. He is a member of the VA FileMan
development team, teaches the VA Kernel
class at the MT A Annual Meeting each year,
and is active in MDC.

94 M COMPUTING

CALENDAR
June 13-17, 1994

MT A-NA 23rd Annual Meeting-Windows of Opportunity, Reno, Nevada.

October 26-28, 1994
USENIX Symposium on Very High Level Languages, El Dorado Hotel, Sante Fe,
New Mexico. Call 714-588-8945 for details.

November 7-11, 1994
MTA-Europe Annual Meeting, Luxembourg.

January 16-20, 1995
USENIX Winter 1995 Technical Conference, Marriott Hotel, New Orleans,
Louisiana. Call 714-588-8943 for details.

To have yourorganization' s meeting(s) listed in the M Computing Calendar, send details to M Comput­
ing, Managing Editor, M Technology Association, Suite 205, 1738 Elton Road, Silver Spring, Mary­
land 20903-1725. Materials must be received four months prior to the date of the event(s).

An Invitation for Authors
and Would-Be Autho:ts

M Computing editors welcome articles and news items from our readers. Tell us
about M application areas, new systems and installations, interfacing, techniques,
technology challenges, or something else related to the world of M. Send book re­
views, product announcements, press releases, other materials, or a brief description
of your proposed article to Marsha Ogden, Managing Editor, MTA, Suite 205, 1738
Elton Road, Silver Spring, Maryland 20903-1725. Phone: 301-431-4070; Fax: 301-
431-0017; or use FORUM.

June 1994

