
COMMENTARY

Where Do We Go Froin Here?

lJy Thomas C. Salander

In The Hitchhiker' s Guide to the Galaxy, The Book (one
of the characters) describes the galactic emperor as "dy
ing, and he had been for centuries." Of course, how the

statement was phrased betrays The Book's editors' prejudice.
From another point of view, the emperor was extremely long
lived.

Mis long lived, as programming languages go. It has been
around since the late sixties and has grown from a laboratory
research project to a billion dollar a year industry in 25 years.
Most of you reading this make your living from M. Some of
you have spent your entire professional career here. Some of
us know that Mis on the verge of a major boom. We have
seen the big break for M "just around the comer." And we've
been seeing it for years.

I have a friend who is fond of reminding me that we all have
a terminal illness: life. Wade is not particularly cynical. He
does like to poke at my prejudices and challenge the assump
tions I make when I take some point of view. He knows that
any point of view has unconscious assumptions and that my
unconscious assumptions will limit my options. None of us
who have been the focus of Wade's challenges have always
welcomed his efforts. Some of us have built such strong de
fenses around our parochial view of the world that even
Wade's subtle pokes and prods, or overt slashes and jabs,
only harden our resolve to not change. Occasionally, some
of us get a glimpse of something different.

The emperor is dying, the emperor is extremely long lived.
Mis an archaic technology ,Mis on the verge of a major boom.
Are you a pessimist or an optimist? Is there another option?

Let's poke a little.

Where Are We?
Mis not mainstream computing. It is only taught in a handful
of schools. No major computer training firm has any offering
on M. No major publication routinely mentions M, let alone
uses Min its programming examples. The national meeting
of the MTA draws fewer attendees than the northeast regional
meeting of the SAS (a proprietary data analysis package) Us
ers' Group. The number of vendors of M is shrinking as are
the advertising budgets for those that remain.

72 /I COMPUTING

Or ... after ten years of high-quality, cost-effective comput
ing in over 170 Veterans Administration hospitals, the De
partment of Defense has begun installing M as the primary
computer language within its hospitals. Software houses like
IDX and Sentient continue to expand and thrive using M as
their primary development tool. In Europe, where M has shed
the "medical language" image, M successfully competes
with the other programming environments with predictions
of much greater growth in new installations over the next five
years. China has requested assistance in evaluating M as a
principal computer language for the country, a potential mar- l

ket larger than the current worldwide installed base. l

I How Did We Get Here?
M did not come out of theoretical academic development
(like PASCAL). Nor did it arise as a way to convince manag
ers that they could still oversee their programmers' work (like
COBOL). M was developed partly as a "what if' and partly
as a pragmatic approach to solving a relatively new problem
for computers: managing large amounts of string data. A side
effect was a computer language that allowed, even encour
aged, rapid development of applications without dictating
style or structure. It was free-form.,l_t was radical. It was an
archy.

The academic community never embraced M, finding the
whole premise alien. Scholars were more concerned with
stylistic correctness and computational purity than with get
ting a job done. Like the old joke during the height of
Artificial Intelligence's fashion popularity-:-if it works, it's
not AI-M suffered because it worked.[1]

I
I
l
l
j
l

I
l
1

1 M also suffered because its developers ignored the "correct" j
classification boundaries. All software was either an op- j
erating system, a programming language, or a database man
ager. Except M. Initial implementations were designed to be j
all three. Like a platypus, M did not fit into the artificial classi- l

1 fications created by the academics and accepted by the indus- ,
try. Without a convenient pigeonhole, M was often ignored. I
It found favor with the uninitiated-the people who came
to computers from other fields -and viewed a computer as a
tool for accomplishing work, not as an end unto itself.
Without the strong, preconceived notions of what made
a "correct" programming environment, they were able to
appreciate M's unique capabilities and high productivity.

June 1994

1
l
l
j

i
l
!
]

With their highly trained minds, the academics could not
see the value of M. It was left to the musicians, lab techs,
secretaries, and English majors to discover the ignorance
principle: "I didn't know it was impossible when I did it."

The big computer vendors sold software as a way to encour
age hardware sales. Again, M did not fit into any predefined
niche. The closest any big vendor came to embracing M
was Digital Equipment Corp. Unfortunately, M spent most
of its time languishing in the medical systems section rather
than being marketed as a data management product. From
time to time people have speculated about this situation.
The most commonly proposed explanation was that Digital is
principally a hardware vendor. An M solution for a customer
would usually be significantly less expensive than some
other system. Different speculators have proposed different
details. In some cases just lower total sales were enough to
discourage possessing M. In others, credit was given only
for hardware sales, but the M solution would usually require
significantly less processing power so the end result was the
same. "'i.

Of course, there is also the explanation that the majority of
Digital' s management, like most of the computer industry,
categorized (and dismissed) Mas a "medical language. "[2]
However, the low cost of M solutions was a real problem
when trying to market M to established IS managers. Like
big cars, big guns, and big muscles, having a big computer
was, sometimes, viewed as a status symbol (at least to the
person who had it). The idea "smaller is better" (in comput
ers) is a recent phenomenon. In the early seventies many
large businesses and institutions would have a whole floor
just for their computer. Some managers would boast that
they had to have, a new building added, the size of a small
house, just to hold the cooling equipment.

When prestige is important (and it is to many people), replac
ing that huge mainframe with a relatively small set of mini
computers is not appealing. Add to that the reduced budget
for maintenance and power consumption, and soon buying
M is a visceral threat, not a logical choice.

There is another factor that may have led to the typecasting
of M. The medical community, particularly hospitals, was
not as quick to automate as were other industries. While there
might have been a computer in the accounting department to
run the payroll, the actual business end was still a manual
process. While a few small segments of the medical commu
nity may have been doing well, for the most part money
was tight. If automation was to come, it had to be cheap.

Thus, for the same reason M might be rejected in a corporate
IS center, it would be welcomed in an overworked medical

June 1994

records office or fledgling laboratory automation effort. With
fewer egos (and jobs) to threaten, fewer preconceived notions
to overcome, and an origin designed to meet their specific
needs, M found greater acceptance in the medical community.

Now What?
A long time ago I lost a canoe race. The race was for charity.
Neither Brian nor I were canoers, but we knew enough to get
by. We borrowed a canoe and paddled onto the Susquehanna
for the first time just before the race began.

For two guys who hadn't been in a canoe in years, we were
doing OK, settling into the middle of the gap between the
lead pack and the middle pack. After a while the river forked
around an island. The leaders were going to the left. On the
bridge before the fork stood my wife, pointing to the left. We
went right ...

... and ran out of water.[3] I tell this story for a couple of
reasons. First, I am not a soothsayer. If I could accurately
predict the consequences of any given action, my life, and the
lives of several other people, would be a whole lot different.
Second, an informed guess is better than an uninformed
guess, but it is still a guess.

Well then, what are our options? If Mis on the decline and
survives primarily on the momentum of its installed base,
then we can look forward to a steady decline in opportunities.
Vendors will look to increasing their share of a shrinking mar
ket, like buggy whip manufacturers in the age of the Model
A. Programmers will move around in a real game of musical
chairs, with fewer chairs each time we look around. Manag
ers will either feel relieved that they no longer have to push
to stay ahead (if they figure they'll retire before they finally
have to port to something else) or will be nervous because
they fear bringing in technology for which they will not be
the source of all expertise.

This option is really the easiest to accept. It requires no effort
to make it happen and it allows us to continue doing just what
we've always done. We don't have to change, though change
may happen to us, like the gazelle that ventures too close to
the edge of the herd when the lioness is hunting.

Another option is to focus our efforts on the medical market
and stop trying to be a general data management system. M's
origins are medical. A large portion of its installed base (in
the USA) is medical. We've had good success in penetrating
the medical market.

Unfortunately, some of the reasons M was initially successful
are no longer applicable. Where once we were entering into
an area with little or no computerization, most medical envi-

M COMPUTING 73

. What is a Gadget?
What kind of Vatues can I assign?

Answers to these questions and more
are just a few'\.,© clicks away.

Mw,4PI Reference & Tutorial CBI
An On-Line Interactive Tool for learning the M
Windowing API! The Tutorial guides the program
mer through a Comprehensive Tutorial that covers
all important features of the MWAPI. Exercises are
presented for all gadgets. A completely functional
windows application is built. The Reference
contains the full MWAPI specification in hypertext
format. It can reside in a Window for quick visual
access to gadgets at all times.

ESI also has other CBl's and Lecture/Workshops
available in M Programming, File Manager, MSM,

DSM, DTM, Object-Oriented Programming,
VMS Concepts and EsiAuthor.

I
Ca// ES/ for more details!

EDUCATIONAL SYSTEMS, INC.
5 Commonwealth Road• Natick, MA 01760
Tel: (508) 651-1400 • Fax: (508) 651-0708

The answer to al
M computing ne

74 Al COMPUTING

ronments today have access to a variety of computers, com
puter languages, and computer database systems. Where the
MIS department used to be a secretary, a lab tech, and an
intern, we now deal with established professionals who often
have come from nonmedical computer environments. The
myth that "medical computing" is somehow different from
other computing is being laid to rest.

In addition, with a more established MIS staff, the herd in
stinct in the medical MIS departments is growing just as
strong as it is in MIS departments generally. People want to
be different, but not too different. The further we get from
the norm, the more nervous we tend to get.[4] When people
look around to see what other MIS departments are doing,
they see Oracle and Sybase and systems written in C + + and
Visual Basic. If we try to sell them an M solution they may
say "what's that?" (with the apprehension reserved for door
to-door salesmen). When we tell them M has been around
for 25 years, their next question is likely to be "then why
haven't I heard of it?"

In the end, focusing on the medical market is really not spe
cializing, it is putting blinders on. It also sounds suspiciously
like sour grapes.

The Hard Way
When Wade pokes at me, he isn't telling me what decision to
make. What he does is encourage me to be honest about what
I've decided, to myself if no one els.e. If I choose not to do
something, I may say "I can't" when more likely the reason
is "I'm afraid I'll fail" or ''I'm afraid to change." Knowing it
is fear that stops me, not capability, helps avoid the layer after
layer of deception I'll have to build to support my excuse if I
don't proceed. It also puts me in a better position if I do.

If M is to survive and flourish, we cannot continue to make
excuses. It will also take courage, hard work, and large
amounts of brutal honesty.

Some thoughts on the details:

Stop thinking we're superior. As a community we have an
arrogant streak as if we are better for using a superior technol
ogy. We're not and it's not. M has many good points: high
productivity, lower hardware requirements, good scalability.
But M also has some weaknesses: low transaction reliability,
character-based screens, poor integration with other environ
ments, and few development tools (most of these have been
addressed in the new standard, but the installed base does not
reflect this). Like a parent, we tend to highlight M's strong
points and minimize its weak points.

June 1994

The fact is that M is not superior to another environment like
Visual Basic, nor is Visual Basic superior to M. They do
have differences, each with its strong and weak areas. If we
continue to ignore that fact, we will not put the needed effort
into improving our weaknesses.

Stop the hype. M is not a religion, it is just one of many
options available for developing computer applications.
When we proselytize M to the uninformed as if we are trying
to save their souls, we will usually only succeed in convinc
ing them we are a bunch of nuts.

We also tend to overstate our case. Understatement will do
us better in the long run. If we tell new customers that they
can run fifty users on the system, and they find they can run
sixty comfortably, M's image will improve in their minds.
If they find out they can only get fifty users on the system if
a snail's pace is acceptable performance, we confirm their
basic suspicion of our other glowing reports.

Stop marketing to shoestring budgets. One of the original
advantages of M W'as its low cost. Unfortunately, we now
find it difficult to bring in the revenues we need to continue
development of the systems and provide the needed customer
support. Those of us who purchase systems need to stop ex
pecting to run a multimillion dollar company on an M license
costing $500. There is still some truth to the adage "we get
what we pay for." Go for quality. M still has many advan
tages and still is a low-cost solution. We can accept a higher
cost and still be low cost, particularly if the quality improves.

Implementors need to stop assuming the price is the primary
factor in purchasing a system. Quality is important. Quality
in the product, not the sales hype. People will pay more for
a better product, particularly if they are still paying less than
they would for a competing product.

Quality is important. Yes, I said that already, but it also
needs a heading allits own. Maybe we've forgotten the point.
Quality is an issue of every aspect of M Technology.

Implementation releases need real quality control, not just
beta testing. Tech support needs the same status (staff load,
quality of training, level of experience) as development. Ap
plication developers need analysis and design, not hack and
slash. They also need to recognize programming as engi
neering, not craft.

Think as a community, not as competitors. More effort
goes into stealing each other's customers than into creating
more customers. What good will it do any vendor to be the
largest if the customer base is shrinking? The current work
with COMDEX is a good start, but it is only a start. More
cooperation between implementors must take place.

June 1994

But it is not just the implementors. The software developers
need to look beyond the M community. If you write a tool,
are you writing it to compete with (and take customers from)
another M developer, or are you writing something that
would also be useful in the non-M market?

End users also need to be community-minded. We need to
be involved, through MTA, MDC, LUGs, writing articles,
and any other way we can interact. The more we are involved,
the more other nonparticipants will start to become interested
and add their efforts. It may be that only one in ten M users
are currently involved in any way. If we even doubled that
number, we would be well along as a strong community with
something to offer the rest of MIS.

Watch the competition. Not us, them. Windows, PCs, net
works, interoperability, reliability, customer support-these
are just some of the focus points in MIS, outside the M com
munity. There is where the competition lies. While we may
have a superior technology for data handling, the customers
may not know that, and may count it as just one more piece
when making their final decisions.

Developers need executables. With most other environ
ments there is the development system, and then there is the
product you produce from that system. Your end product is
usually an "executable" and, usually, it can be distributed
freely.

If we want to get M out there as a real alternative for software
development, we cannot continue to shackle the developers
by insisting that they distribute full licenses. The end user
does not need a development system (which most M systems
are), and the cost makes M the high-priced option, not the
low cost we have come to expect.

Developers need tools. The problem may be chicken and
egg. Developers do not use many tools partly because there
are not many tools to use. There are not many tools because
there hasn't been much incentive to market them (few buy
ers). Since we have to start somewhere, I go for the buyers.
That is, the software developers need to start using the tools
that are there. As they get used to the idea there will be more
market for better tools.

Of course, getting programmers to use someone else's tools
leads to the next point:,

Purge the NIH (Not Invented Here) syndrome. If every
application programmer is going to insist writing everything
from scratch, M will be the computer equivalent of quilting:
it's nice busy work that keeps a person occupied (presumably

Al COMPUTING 75

pleasantly), its end product may be pretty and individual, but
if you need to keep warm, the more off-the-shelf components
the better.

Keep trying. Few things worth while come easily. When
each ofus started in this world we had a built-in tenacity that
served us well. Anyone who has watched a child learning to
walk can attest to that tenacity. Few of us are willing to fail
as many times as that child does and still keep trying.

But we need to try more. One failure, two failures, these are
not the things that make or break. Ten failures, twenty fail
ures-salesmen have told me that a success rate of one in
twenty is doing well. Probability theory shows that all the prior
instances have no bearing at all on the probability of the next
try.

M has been around for a long time.Mis a new technology.
It depends on your point of view. It's all old, has been tried
before, and we know it won't work. Everything is new and
fresh each time we try.

Which point of view you take decides what happens next. M

Thomas Salander is the Vice Chair of MT A, and headed the MUMPS
Development Committee from 1988 until early 1994. He has been writ
ing for M Computing and its forerunners for several years, having
served as guest editor and on the editorial board. He can be reached at
Thomas Consulting, 3629 Kimble Road, Baltimore, MD 21218-2027.

Endnotes
1 . In 1969 I was taking a programming course in Fortran on an IBM
360. This was a religious experience. The keypunch machines were the
holy water with which we anointed ourselves on entering the great hall.
The computer operators were the acolytes who took our offerings to the
altar. The systems programmers were the high priests who were the
few who could interpret the gods' utterances, who informed us (through
the acolytes) that all the failures were due to our own imperfection, and
who could bless you with a dispensation (and run your program with the
right switches set) if you knew them, they liked you, and you delivered a
six-pack by Friday night. The Information Systems faculty were the
philosophers, sages, pundits, and gurus.
Once we were handed a deck of punch cards and told to sort it. After
a couple of minutes I handed the deck back, sorted by hand. The instruc
tor was not amused. Three days later most ofus had succeeded in getting
a program to run. When graded, there was no correlation between a
program's ability to sort the deck and the grade received. Like appren
tices to a master artist, emulating the instructor's style was a better road
to success.
Even then, an engineering approach to programming was more lip ser
vice than reality.
2. I find this explanation the most plausible, primarily because of Oc
cam's Razor.[5) However, some may argue that this explanation does
not cover all the known facts (as required by Occam)-in particular,
the evidence that unit performance appears to have been hardware-sales
related. To these people I would add the corollary to Occam's Razor:
Never attribute to malice that which could also be explained by igno
rance.

76 M COMPUTING

3. Actually, the worst part was the mud. When we got out to try and
get back to usable water, we went up to our knees in river mud. Despite
this, we still finished the race near the back of the middle pack. We
learned much from this. Brian learned to wear a hat on his bald head
when he was out on the river. I learned not to be so quick to jump out
of the boat. We also learned that taking a different path doesn't always
put you ahead, but often gives a more memorable experience.
One more odd bit: we were the second canoe to take that fork. Later
we learned that nearly a third of the middle pack followed us. This
included at least one team that regularly canoed this river. Interesting
thought.
4. The problem is related to perception. (This is part of what advertising
is designed to do: convince you that "everyone else is doing it.") We
perceive a higher intelligence level in the mass of people than in our
selves. I started using WordPerfect in 1988 as my first PC-based word
processor. While I still use it from time to time, I am not fond of it and
have found several other word processors that I like better. Yet people
continue to buy WordPerfect primarily for one of two reasons: 1) they
know how to use it; 2) it is the largest-selling word processor, so it must
be good.
Thus, one of the reasons WordPerfect is the largest-selling word proces
sor is because it is the largest-selling word processor. (Momentum in
motion.)
The same process is happening with programming languages, where
"object-oriented assembler code".is becoming the odds-on favorite for
the next programming language of choice. This would replace COBOL
as the most required language skill. However, COBOL still dominates,
primarily because of the huge installed base. (Momentum at rest.)
5. William of Occam (c. !4th century), "Entia non sunt multiplicanda
praeter necessitatem."
Translation: "Entities ought not to be multiplied except from ne- .
cessity."
Explanation of the translation: "All unnecessary facts or constituents
in the subject are to be eliminated."
Rephrasing of the explanation: "The simplest explanation, provided it
accounts for all the pertinent facts, is usually the best."
Common (but incorrect) usage of the rep~g: "Don't make it more
complicated than it has to be.'.'

Moving?

Let us know! Contact us at:
M Technology Association
1738 Elton Road, Suite 205
Silver Spring, MD 20903

Phone: 301-431-4070
Fax: 301-431-0017

Please include your MTA ID number or
mailing label from M Computing along with
your new address.

June 1994

