
TECHNICAL
PAPERS

Organizational Benefits

of

Object Orientation

Terry L. Wiechmann
Educational Systems Inc.
5 Commonwealth Road

Natick, MA. 01760
508-651-1400

Abstract

This paper will attempt to explain the benefits of Object
Orientation by:

• enumerating accepted software quality concepts.

• describing the Object Oriented analysis and
design approach to a general problem domain.

• relating the consequences of the Object Oriented
approach to the software quality goals.

Because the Object Oriented approach is expanding
rapidly into diverse application areas, reference to Object
Oriented concepts within this paper will be confined to M
style database applications.

Software Quality Issues

Evolutionary changes in nature are only perceptible when
observed over a very long period of time. However, the
evolution of computer technology has advanced at an
incredible rate within our lifetimes. We've all witnessed
the progress hardware has made toward the goals of
reusability and extendibility. At the same time we are left
with the feeling that these goals are unreachable within
the software domain. Hardware evolved toward the
desired goals of reusability and extendibility more rapidly
than software, the result being the Integrated Circuit
(IC).

Software, on the other hand, has taken a zig-zag course
toward these goals. New approaches to software
development seem to promise the same results hardware
attained, often failing in and of themselves. Good ideas
abounded, but never seemed to be a complete solution,

66 Al COMPUTING

leaving an air of skepticism for .. anything new and
untried.

As a result of this hit and miss approach, we've gained
some knowledge.

1. Software must be developed with specific goals
in mind.

2. To attain these goals, a specific, well defined
approach must be taken;. a paradigm is required.

Bertrand Meyer lays a foundation for software quality in
his book: Object-Oriented Software Construction. 1 He
outlines software quality in terms of internal and external
software engineering issues. The diagram below
illustrates these issues.

Software Quality Goals
/' ' Internal External

Readability
Reusability
Extendibility

Modularity Correctness
Robustness

Documention Compatibility

These issues are viewed as desirable, software
engineering goals. Internal qualities are programming
issues and hidden from the user. External qualities affect
not only the programmer, but the organization as a
whole. Both are important aspects of software
engineering quality.

June 1994

As Meyer correctly states, " ... correctness, robustness,
extendibility, reusability and compatibility. They
reflect the most serious difficulties with today's software
development practices. Programs too often do not do
what they are suppose to do (correctness). They are not
well equipped enough to deal with abnormal situations
(robustness). They are too difficult to change
(extendibility). Their construction does not rely enough
on previous efforts (reusability). They do not combine
well enough with each other (compatibility)."

Obviously there are many more issues that affect quality.
However, it is the five external issues that have the most
impact.

Somethine Old, Somethine New ...

So if these are the goals, do we have to recreate a totally
new approach to accomplish them?

No! Like most things that evolve, some approaches die
because they can not adapt, others thrive because they
solve a part or all of a problem.

Without elaborating upon what constitutes the traditional
approach to software development, let me merely state
some undesirable aspects:

• The analysis and design of a system is often
driven by data attributes, not objects.

• Real world objects are often modeled using some
arcane, inconsistent internal representation
requiring excessive transformations to produce
different views of the object.

• The data, and the code that operates upon the
data, are logically separated when they should
be treated as a unit.

• Traditional approaches often are not capable of
modeling complex, nested objects.

Yes, I'm sure these points could be argued ad infinitum.
However, the end result is this: The real world is made
up of objects, why not model them as objects?

The Object Oriented approach accomplishes the goals
outlined by Meyer because it combines useful, time
proven aspects of software engineering with some
relatively new concepts. These approaches combine to
form a synergy; a paradigm that comes closer to a
complete solution to the software engineering problems
we face today.

June 1994

Attainine Quality Goals via the Obiect Approach

In general, the fowllowing concepts combine to form the
Obejct Oriented paradigm:

• Object Identification.

• Object Typing through Abstraction.

• Organizing Levels of Abstraction.

• Polymorphic behavior through Inheritance.

Object Identification

The first, and most important concept is that of an object.

Cox defines an object as follows:

"An object is some private data and a set of operations
that can access that data. An object is requested to
perform one of its operations by sending a message
telling the object what to do. The receiver responds to the
message by first choosing the operation that implements
the message name, executing the operation, and then
returning control to the caller. 112

Several important points can be extracted from this
definition: ~

• All information and behavior contained
(physically and logically) in an object is hidden
(encapsulated).

• The data structures of the object can only be
accessed by the objects methods (code).

• Objects are not called and forced to perform an
operation, they are sent a message and asked to
perform the operation. The receiving object is
autonomous and makes its own decisions.

Not mentioned in the definition is object nesting -
objects can contain objects. Given a consistent definition
and the additional benefit of nesting, modeling very
complex objects is simplified.

If an organiz.ation bases its future on objects, it
establishes a consistent, well defined foundation for all of
its engineering projects. This fundamental concept has
far reaching benefits. Code becomes generalized,
consequently there is less of it to support and the learning
curve flattens. The quality goal of compatibility is largely
attained.

M COMPUTING 67

Obiect Typing through Abstraction

Given a consistent object definition and structure that can
be used to model objects in the real world, we are faced
with the need to create object types.

Modeling a problem domain using computers involves:

1. Identifying all of the objects within the problem
domain.

D

D 0
D D

D

0
D

2. Grouping the objects by common attributes.

□ D 0
D D

D D 0
3. Creating an object type by storing definitional

information and code (methods) that can be used to
create the real world object (instance). The creation
process establishes an instance-of relationship
between the instance and abstract type.

Round Box •
□
D
D

Rectangle -
D
D

D

Circle •
0

0
To quote Khoshafian and Abnous: "Abstract data types
extend the notion of a data type; they hide the
implementation of the user-defined operations associated
with the data type. This information hiding capability
allows the development of reusable and extensible
software components. 113

68 Al COMPUTING

From a traditional standpoint, this is what data
dictionaries are used for. What is different with the object
oriented approach is the code that creates and
manipulates the instance is also stored along with the
definitional information - not in a separate, monolithic
functional structure.

Organizing Levels of Abstraction

The concept of organizing objects by common attributes
can be applied to the definitional levels until exhausted.
In the example below, the common attributes are
extracted to form yet another object type, the Shapes. To
illustrate a parent-child relationship known as a kind-of
relationship, the first level abstract types are organized
under Shapes. Therefore, Rectangle is a kind of Shape.

Shapes

• I f I
Round Box Rectangle Circle

■ - -
D D 0
D D

□ D 0
The example is correct in an elementary sense. However,
to the trained analyst, two discrepancies can be noted:

1. The structure is not based. on the general case.
There are many more geometric shapes than
illustrated above.

2. A Round Box is not only a shape, but a specific
example of a Circle and a Rectangle. How would
this knowledge alter the hierarchy?

Abstracting out levels of commonality to form the object
type hierarchy is a classification process. Consequently,
these object types are called Classes.

Polymorphic Behavior through Inheritance

Abstracting attributes (variables) and behavior (code)
into hierarchical layers, from specific (bottom) to general

June 1994

(top), implements the potential for polymorphic behavior
- the ability to associate different values or behavior to
the same name. For example, in the Circle ➔ Shape
inheritance path, two different methods with name Area
could be stored at the Circle and Shapes levels. When a
message is sent to an instance of Circle, asking it to
calculate its area, the first method with the name Area (at
Circle) will be executed.

Adding the concept of inheritance to this hierarchical
organization enables polymorphism. Anytime a variable
or method name is referenced, the name first found in the
hierarchical path (from specific to general) is used. It is
this mechanism that enables the separation of code and
variables. It extends the concept of generalization beyond
procedural boundaries by dispersing code and variables
along inheritance paths.

Organizing code and variables in this two dimensional
structure offers several benefits.

1. Code acting upon data can minimize the use of
case statements since it can be specialized for
specific ""'\ objects. Consequently, this feature
minimizes the potential for errors, extending the
goal of robustness.

2. Errors that are isolated to a specific object tend not
to propagate. Consequently, debugging time is
minimized, eliminating wasted time and money,
thereby extending the goal of robustness.

3. Permits overriding of code and variables, rather
than copying code to add or modify functionality.
This eliminates redundant code and minimizes
support problems, thereby extending the goals of
extensibility and reusability.

The Path to Obiect Orientation

By this time some questions should have arisen. If my
organization moves from its traditional system, how do
we migrate to an Object Oriented environment? Do we
have to re-write everything all at once or can we migrate
slowly? What's the cost of such a move and is it worth it?

As with all paradigm shifts, moving from one
technology to another affects the bottom line. There are
costs associated with moving down the Object Oriented
path. Exploring this area in-depth merits another paper.
However, let me list some obvious areas.

June 1994

Hardware Costs - If a shift is made, what use can be
made of old technology? Is this an opportunity to replace
old eqnipment or is there a choice?

Software Costs - New software is generally needed to
support the Object Oriented paradigm. What language,
GUI, database system, or turnkey application are best
suited for the organizations needs? Decisions made about
software can spell success or failure.

Training Costs - Hardware and Software costs are
tangibles. Shifting the mentality of your IS staff is an
intangible - it can be the most unpredictable aspect of any
transition. This is the area where most attention should
be focused. Shifting from traditional analysis, design and
programming techniques to the Object Oriented approach
requires more unlearning than actual learning of new
material.

Clearly, there are many other areas of concern. Given
that, it should be sufficient it to say that a carefully
planned integration is important to the migration.

Conclusion

Object Orientation adds a new dimension to software
engineering, offering an organization's IS staff an
intuitive, flexible paradigm to build information systems
upon. The concept of an object forms a solid foundation.
Data abstraction, organization of abstract types into
hierarchies in conjunction inheritance extends software
engineering goals beyond the limits of the procedural
domain.

1OBJECT-ORIENTED SOFTWARE
CONSTRUCTION, Bertrand Meyer, Prentice Hall.

2OBJECT ORIENTED PROGRAMMING, AN
EVOLUTIONARY APPROACH, Addison Wesley,
Brad Cox.

3OBJECT ORIENTATION, Concepts, Languages,
Databases and User Interfaces, Wiley Professional
Computing, Setrag Koshafian and Razmik Abnous.

REPRINTS ARE AVAILABLE!!
Please call the MT A office at

301-431-4070 for details.

M COMPUTING 69

