
TECHNICAL
PAPERS

MilS TOM CONVERSION AND LANGUAGE COMPARISON

Gary S. Shumway, CCP,MA,MPH,MBA
Shumway & Associates

21935 Van Buren St., Suite B-11
Grand Terrace, CA 92324

Phone: (909) 370-4336
Fax: (909) 370-4214

ABSTRACT

The conversion of dated mini-computer based MUS systems to
micro-computer based M systems is becoming less of an
option and more of a necessity. This paper compares the
syntax of the MUS and M languages from the perspective of
converting MUS routines to M and provides suggestions for
programming MIIS in a more M like fashion.

INTRODUCTION

MIIS, a dialect of M, is Medi-Tech's (Medical Information
Technology, Inc.) proprietary operating system and applications
language. MIIS was first licensed circa 1970 and is currently
supported (though further development ceased circa 1982) on
the DEC VAX, and DG Eclipse, MV, and AVION mini
computers. Over the years and on a number of platforms,
MIIS has proven itself to be bullet proof, fast and efficient.
Regardless, the days of MIIS are numbered due to the
following: 1). powerful micro-computer hardware is rapidly
decreasing in both the purchase price and maintenance cost, 2).
the increase in demand by users for routines utilizing Graphical
User Interfaces (GUI) and the X Windowing environment, 3).
the increasing use of portable micros and their
interconnectivity to networks, 4). the increased flexibility and
expandabilty of M vs MIIS, 5). the plethora of 'off the shelf
software (both M and non-M) that are available for the micro
computer, 6). the increasing robustness and functionality of M
and networking systems, 7). the cost of maintaining the MIIS
OS vs a M system, 8). the availability of M programmers vs
MIIS programmers, and 9). the lack of further developement
of MIIS by Medi-Tech (in fact Medi-Tech is encouraging users
to migrate to their 'MAGIC' product.)

Before converting MIIS routines to a M based system the
following questions should be addressed: is the MIIS system
simply to be converted to M or rewritten and updated, who

58 Ill COMPUTING

will do the conversion, for how much and in what time frame.
Those questions appear to be best answered on an individual
site and application basis. The question, which is the focus of
this paper, is what language differences are going to be
encountered during the conversion of MIIS to M.

This paper is then a comparison of the two languages. As
some sites may anticipate converting in the more distant future,
some suggestions for making any new MIIS code as M like as
reasonably possible has been included. It is not suggested that
the more 'advanced' or unique capabilities of MIIS be avoided.
Rather, it is suggested, that when generating new code or
updating existing routines that the programmer be aware of
some of the more salient differences and similarities between
the two programming languages and write code that would
minimize conversion difficulties. Tlie following then is a
summary of the differences and similarities in the two
languages with suggestions for programming MIIS in a more
M like fashion.

MIIS TO M COMPARISON

The format for the MIIS to M language comparison that
follows is:
a) first the MIIS command/function is shown,
b) then a two dot separator,
c) the M command/function is then displayed,
d) the name of the command follows in parenthesis (if the
command names are different then they are separated by two
dots, and
e) finally the comparison and discussion.
For example, 'MIIS .. M (name) discussion'. If 'No change.' is
used in the discussion field it indicates that the code used in
MIIS is directly convertible to M even though M may offer
additional functionality for that command. If there is no

June 1994

command for a particular command or function in one of the
languages then a lower case 'n' (for none) will be inserted.

Note that this is paper is not meant to be an all inclusive
comparison of all the nuances of the two languages nor a MIIS
or M programming tutorial but rather a guide to encourage M
like programming in MIIS, to address the more salient
differences between the languages, and thus ease the
conversion from MIIS to M.

The language comparisons are broken into the following
categories: commands, functions, extrinsic variables, special
variables and reserved words, arithmetic unary operators,
arithmetic binary operators, arithmetic relational operators,
string binary operators, string relational operators, and logical
operators. Comparisons between the two languages are based
on MIIS version S.MIIS.R-11-1.1 and the 1990 ANSII Standard
M.

Commands
""\

A .. O/U (Assign .. OpenfUse) The MIIS Assign command is
functionally similar to the Use command in M. Note
that ownership of the device must first be established
with an Open command in M before Use can be
executed. The Assign and Use commands may also
have different device parameters depending on the
implementation. The Assign command will have to
be changed to Open and Use commands at conversion
time. Note: the Open command in M establishes
ownership of a device whereas the Open command in
MIIS establishes ownership of a global (see also the
MIIS Open command discussion).

B..B (Break) No change.

C .. D (Call .. Do) The Call command in MIIS functions
similarly to the Do command in M in that it transfers
control from one part of a routine to that of another
routine with control returning upon encountering a
matching Quit. In MIIS the Call command 'calls'
other routines and the Do 'does' other lines within the
original routine. In M the Call and Do function are
combined into the Do function, i.e., there is no Call
function in M. Note that not only will the Call have
to be converted to a Do but the syntax of the
argument may also have to be edited. For example in

June 1994

MIIS a 'C pgm@tag' will have to be converted to 'D
tag"pgm' in M. Local variable passing between
routines compound the problem as MIIS converts the
variables to %0 through %n whereas M requires a
receiving list of variable names. These differences
will have to be dealt with upon conversion.

C .. L (Close .. Lock) The Close command in MIIS is used
in conjunction with the Open command. Open is
primarily used to establish ownership of a global thus
avoiding conflicting updates. The Open command
creates an entry in the system's open table indicating
that a particular job has Opened a global node while
the Close command deletes that entry. The
corresponding command in M is Lock; where 'Lock
+gbl' is comparable to the MIIS Open command and
'Lock -gbl' is comparable to the MIIS Close
command. Also see the MIIS Open and Unassign
commands discussion. Note: the use of the Close
command in M Closes (releases) ownership of a
device not a global (see the MIIS Unassign
command). The difference in use of the Close
between MIIS and M will have to be resolved at
conversion.

D .. D (Do) The functional use of Do in MIIS is a
syntactical subset of the use of Do in M. There
should be no difficulties converting the use of Do in
MIIS to M but the reverse does not hold true.

E..E (Else) The Else command in M permits conditional
execution dependent upon the value of the $Test
variable. In MIIS the Else command is dependent
upon the previous If statement's truth (the If-Switch).
As in MIIS the If command in M is evaluated and the
$Test variable is set accordingly. There should be no
conversion difficulties with the Else command if the
$Test variable is not reset by code prior to executing
the Else command.

E..n (Erase) The Erase command in MIIS is typically
used in program editing by the programmer to erase
lines of or entire routines from the partition. Erase
may also be used by more utility type routines but
should pose minimal difficulties in the conversion of
application routines. Note: M vendors typically
supply a 'Z' command, e.g., ZR, which is functionally
similar to the MIIS Erase command.

Al COMPUTING 59

F .. n (File) The File and File pgm:X commands for storing
and deleting programs in MIIS are seldomly used
within application routines. The lack of support in M
for this command should not be a big problem but
any uses of File in MIIS routines will have to be dealt
with at conversion time. Note: M vendors typically
supply a 'Z' command, e.g., ZS, which is functionally
similar to the MIIS File command.

F .. F (For) The argumentless F command is the File
command in MIIS whereas the argumentless F
command in M is an endless For loop. Other than
the argumentless F command the For commands are
the same in MIIS as in M and should pose no
problems at conversion.

G .. n (Go) The Go command in MIIS is used to resume
instruction execution after encountering a Break. The
Go command may only be issued in direct mode with
no arguments thus should pose no problem upon
conversion.

G .. G (Goto) The use of Goto command in MIIS should
not pose a problem in the conversion to M, but the
reverse is not true.

H .. H (Halt) No change.

H..H (Hang) No change.

1..1 (If) No change.

J .. J (Job) The routine to be Jobbed in MIIS must be filed
as 'pgm#', i.e., have the final character of it's name
being the pound sign. The pound sign ending is not
necessary in M. A routine in M is Jobbed by the
syntax 'J "pgm' or 'J line"pgm' or 'J line"pgm(vl,v2)'
and no local variables are passed by default. In MIIS
routine names are not referenced with the '"' prefix,
lines are referenced after the routine name, e.g., 'J
pgm#@line', and there is not specific parameter
passing in MIIS but rather the passing to the Jobbed
routine the $Q and $R values, principal device,
Namespace names, $0 reserved word, and the entire
local symbol table of the routine doing the Jobbing.
These differences in the use of Job will have to be
resolved at conversion.

60 M COMPUTING

K..K (Kill) The use of the 'K *"gbl' syntax in MIIS and
the fact that 'K "glb(node)' kills all descendant nodes
in M but not in MIIS could cause problems upon
conversion. Other than the above caveats the Kill
command syntax is the same.

L .. n (Load) The Load command is seldomly used from
within application routines. If used, the Load
command will have to be edited at conversion time
replacing 'L' with the M vendor supplied 'Z'
command, e.g., 'ZL'.

M .. n (Move) The Move command is usually used in MIIS
during the creation of a program enabling the
programmer to move the program line pointer to the
desired line. The Move command is not supported in
M as a full screen editor is typically employed in
program creation rather than the line editor supplied
by Medi-Tech in MIIS.

N .. n (Namespace) The MIIS Namespace command has no
M equivalent. The use of Namespace in routines that
are to be converted to M should be avoided to
minimize conversion difficulties. The Namespace
command is useful and more efficient (code and
compute time) but not necessary and it's use is not
difficult to avoid.

O .. L (Open/Close .. Lock) The file locking Open and
Close commands in MlIS will need to be converted
to the M Lock command at conversion time. Also
see the MIIS Close com.nJnd discussion.

O .. G (Overlay .. Goto) The MIIS Overlay is similar in
function to the M Goto command. The syntax of the
argument may have to be edited during conversion.

V .. N (Variablize .. New) The M command that comes
closest in function to the MIIS Variable command is
the New command. The New command temporarily
removes variables which are restored upon
encountering a Quit from out of a Do or Xecute (see
a M language reference for a full description). The
Variable command creates another local copy of the
variable equal to a specified value (similar to a set).
V ariablized variables are stacked and are killed in
order by each Kill command. Variable passing in
application routines will likely be a source of
difficulty upon conversion.

June 1994

n .. o

P .. n

(Open) The equivalent to the Open command is not
required in MIIS when establishing ownership of a
device but an Open will be needed for device use
after conversion to M. Also see MIIS Assign
command discussion.

(Print) The Print command in MIIS is usually
supported in M by a vendor supplied Z command,
i.e., 'ZP'.

Q .. Q (Quit) The Quit syntax is the same in both languages
except that M requires two spaces after a Quit (or
Quit be the last command on a line) and Quit returns
a value of the argument following the Quit in
extrinsic functions. If the MIIS programmer makes
a habit of placing two spaces after the Quit command
there would be no code change needed during
conversion from MIIS to M.

R .. R (Read) The variable read, timed read, character read,
and string/variable read commands function the same
in both lan~ges. Note that M also supports the
syntax 'R V AR#n' where n is a numeric expression
which specifies the maximum number of characters to
be input. The Read command itself should cause few
problems during conversion.

S .. S (Set) The Set syntax is the same in both languages
except that M supports 'S (l,J,K)=l' and MIIS does
not. AdQitionally, MIIS supports the 'S *Agbl'
command for copying data structures and for
optimizing the physical storage of files where M does
not. If the 'S *' command is used in MIIS routines
then the incompatibility will have to be resolved
during conversion.

T .. n (Transfer) The MIIS Transfer command is used to
copy blocks from the disk to the view buffer and visa
versa. M vendors typically supply a Z command with
similar functionality. The use of the Transfer
command is rare in MIIS application routines.

U .. C (Unassign .. Close) The use of the Unassign
command in MIIS is to relinquish control of a device.
The M Close command parallels that functionality.

n..V (View) View provides an access point within M for
the examination and/or modification of
implementation-specific information. Also see the

June 1994

MIIS $View function.

W .. W (Write) The Write command is the same in either
language except for the special formatting supported
in MIIS with the :D, :L, :R, and :T suffixes. The use
of the Write formatting commands will have to be
recoded to utilize the M $Justify and $FNumber
commands or to access formatting sub-routines or
utilities.

X .. X (Xecute) The Xecute command itself is supported in
both languages and .does not need altering but the
arguments Xecuted may have to be modified upon
conversion.

Functions

SH .. SA ($Hash .. $Ascii) A change of the function name $H
to $A will need to occur during the conversion
process though the general syntax of the functions
remains the same. Note that M returns a -1 for
$A("") whereas MIIS returns a O and this may have
to be resolved in code.

SC .. SC. ($Character) No change. Note that M supports
multiple ASCII codes, e.g., $C(65,66) yields 'AB'
whereas MIIS supports only a single ASCII code per
function.

SD .. SD ($Define .. $Data) The $Define function in MIIS
returns a O if the variable is not defmed (FALSE) or
a 1 if it is defmed (TRUE). In M the $Data function
returns a O if the variable is undefined, 1 if the
variable is defmed but has no descendants; 10 if the
variable is not defmed but has descendants, and 11 if
the variable is both defined and has descendants. The
return of O or 1 in either language is the same but M
returning a 10 could be a source of difficulty in
conversion. Additionally, an optional second
argument is supported in MIIS, which if present, is
any identifier except a packed-data name and is the
name of the variable in which to store the value
assigned to the first argument (variable). To ease
conversion the second argument should not be used.

SE .. SE ($Extract) No change.

Al COMPUTING 61

SF .. SF ($Find) In MIIS if the substring is not found in the
string then a value of 1 is returned; in M a value of
0 is returned.

n .. SFN ($FNumber) The $FNumber function is used by M
for formatting numbers. $FN can be used in
conjunction with $J to supplant the use of some Write
argument:suffix commands in MIIS. Also see the
MIIS Write command and the M $Justify commands.

SG .. SQ ($Globalget .. $Query) Rather than treating a file as
tree structured, e.g., $N, the $G function in MIIS
treats the file in a sequential or serial manner. The
use of $G in MIIS necessitates the conversion to $Q
or $0 (non-sequential) in M at conversion because the
syntaxes are greatly different. Some vendors also
supply a 'Z: command for serial global access. Note
the difference in usage of $Globalget in MIIS and
$Get (see below) in M.

n .. SG ($Get) $G in M returns the value of a variable or a
null string if the variable is not defined.

SI .. n ($Inverse) Not supported in 1990 ANSII Mand will
have to be dealt with at conversion.

n .. SJ ($Justify) MIIS uses :D, :R, :L, & :T for similar
(though a superset of M) functionality. If possible, it
is suggested that '?' (tab) and $E be used in MIIS. It
is likely, due to the inconvenience of using other
formatting techniques in MIIS that the majority of the
formatting changes will have to occur upon
conversion. Also see the MIIS Write command and
M $FNumber discussions.

SL .. SL ($Length) No change. Note that M supports a
second argument which MIIS does not.

SM .. na ($Multiprecision) Used in MIIS for full division and
the formatting of results. The $M function will have
to be dealt with at conversion by additional M code.
Also see the M $FNumber function.

SN .. SN ($Next) The use of $N in M will not be supported
in future versions of M. Thus the $N function in
MIIS will need to be converted to M's $0 function
which returns a null string (as $N in MIIS does to
indicate end). Note that $N in M returns a -1 not a
null string. Also see the M $0 function discussion.

62 Al COMPUTING

SP .. SP ($Piece) $Piece is very similar syntax in both
languages except that the delimiter in M (if a literal)
must be surrounded in quotes whereas the use of';',
',', and '.' in MIIS do not require quotes (other
delimiters do require the quotes). The insertion of
quotes in MIIS regardless of the decimeter would
ease the conversion of $P from MIIS to M.

n .. SQ ($Query) $Query in M returns the next subscripted
value (in collated sequence) that has a value. The
syntax of $Q is different enough from the MIIS $Get
function that it is mentioned separately. See also the
MIIS $G function discussion.

SR..SR ($Random) No change.

n .. SS ($Select) No MIIS equivalent function.

ST .. ST ($Text) Syntactical equivalent in both languages
(except possibly the argument). The MIIS
programmer must be aware that $T(+0) returns the
first line of a program but in M that line may only be
the program's name whereas the line containing the
program name, description, date created, programmer
initials, etc. is $T(+l). It's safer to use $T(pgm)
where pgm is the program name when accessing the
program description, programmer, etc.

n .. STR ($TRanslate) No MIIS equivalent function.

SU .. n ($Update) $Update in MIIS increments the var in the
expression $U(var,exp) by ~numeric value of exp.
If exp is not present the default value is 1. $Update
takes place in a time-sharing protected fashion so that
it is not necessary to use Open statements when
$Updating global nodes. This time-sharing protected
updating is the only critical difference from using the
argument var=var+exp in M. The 'L'ock function in
M will have to be used with $U when updating
globals to retain the same functionality.

n .. SV ($View) No direct MIIS equivalent though there is a
View Buffer. $View is an implementation-specific
function.

June 1994

Extrin._sic Variables

SP .. n ($Password) MIIS supports the partitioning of the
disk or disks into unique sections or passwords.
Unless the routine or global is a system routine or
global (name preceded by a '%') then routines or
globals are only accessible from within the specific
password. Thus two routines can have the same
name yet be filed in different passwords and thus co
exist. Depending on system set-up M also supports
multiple partitioning of a disk or disks but does not
tJSe $Password.

SQ .. n

SR .. n

ST .. SH

($Queue) $Q is a MIIS reserved word containing an
integer value of O to 7 which is explicitly Set to the
appropriate value. The eight different wait queues are
serviced by the CPU in the order of their number. A
similar variable or command may be supported by the
M vendor but Standard M does not have a similar
variable thus the use of $Q should be avoided in
MIIS though the conversion would not be difficult.

""\
($Resource) The $Resource MIIS reserved word
takes on values of O to 3 and indicates how long the
job will run when run. Standard M does not have a
similar function though a M vendor may support
similar functionality. Use of $Resource in MIIS code
to be converted to M should be avoided.

($Time .. $Horolog) As used by MIIS, $Time is the
number of seconds since January 1, 1976, i.e.,
12:00AM on January 1, 1976 is 0. In M $Horolog
consists of two comma pieces where the first is the
number of days since December 31, 1840 and the
second piece the number of seconds since midnight.
The differences in $T and $H will have to be resolved
upon conversion.

S~ial Variables and Reserved Words

SLSI ($Io) In both languages $Io is the unique numeric
identification of the current input/output device.
Depending upon the application and system set~up the
$Io for the devices would likely be different for the
two systems. Thus any routines relying on specific
$Io's may have to be converted

June 1994

SJ .. SJ ($Job) Each process in MUS and M has it's own
unique numeric job number ($J). Except in the
unlikely event that routines require specific job
numbers, there should be no difficulty in conversion
for this special variable.

SS .. SS ($Storage) In both MIIS and M, $Storage is the
number of free (unused) bytes in a job's partition.
Except that M partitions are typically larger than
MIIS's 2048 byte partitions there is no change.

n .. ST ($Test) $Test in. M is similar to the IF-SWITCH in
MIIS though with more functionality.

SX .. SX ($X) No change. The first column is O not 1 in both
languages.

SY .. SY ($Y) No change; The first row is O not 1 in both
languages.

? .. ? (Tab) No change. Note that the first column is O not
1 which is the same in both· languages.

! .. ! (Line Feed) No change.

.. # (Form Feed) No change.

_ .. @ (Indirection) The use of indirection is one of the
more powerful elements common to both languages.
The indirection syntax is nearly the same in either
language except for the use of'_' (underline) in MIIS
and'@' (ampersand) in M. When using undefined
variables in a MIIS indirection argument it is
recommended that the argument should be enclosed
by parentheses to make the syntax more acceptable
for use in M. For example in MIIS the statement 'S
A="XY",XY="MN",_("B="_A)' should be used
instead of 'S A="XY",XY=''MN",_"B="_A' as M
supports the former. Name indirection and pattern
indirection is syntactically the same in either
language.

Ill COMPUTING 63

Arithmetic Unary Operators

+ .. + A '+' as the first character of an argument causes both
MIIS and M to take the numeric interpretation of the
argument. The use of'+' is a mixed bag in MIIS.
That is, if 'A=7' and 'W +A' is executed then the
number 7 is written. If 'A="34B"' and 'W +A' is
executed MUS will return a ? Syntax error where M
will return the number 34. Regardless, the syntax of
the '+' unary operator as used in MIIS makes it
compatible with M but not necessarily visa versa.

A'-' as the first character of an argument causes both
languages to take the numeric interpretation of the
argument and negate it. The '-' unary operator
functions the same in either language, e.g., if
'A="34B"' executing 'W -A' produces a -34 in either
language; thus no change.

Arithmetic Binary Operators

+ .. + (Addition) No change.

(Subtraction) No change.

* *

/ .. \

n . ./

.. #

(Multiply) No change.

(Integer Divide) The result of the division is
truncated to an integer. Note the use of the back
slash in M vs the forward slash usage in MIIS.

(Full Division) The use of $Multiprecision in MIIS
will produce a full division result with the use of'/'.
Note that MUS does not support the use of''< and that
$M is not supported in M. Thus, at conversion time
the $M function must be eliminated and the argument
within the $MO function rewritten.

(Modulo) No change.

Arithmetic Relational Operators

< .. < (Less Than) No change.

> .. > (Greater Than) No change.

64 Al COMPUTING

String Binary Operators

(Concatenation) No change. Note that MIIS also
supports the period as the concatenation operator
while M does not support the period as the
concatenation operator. It is advised that the MIIS
programmer use the'_' operator rather than the'.'.

String Relational Operators

n .. [

n ..]

(Equals) No change.

(Contains) Not supported inMIIS thus no conversion
problem.

(Follows) Not supported in MIIS thus no conversion
problem.

(Pattern Match) The pattern match codes are a mixed
bag; three codes are the same (A, N, & P), the code
U in MUS is the same as E in M, and three codes are
supported in M but not MIIS (C, L, & U). The
following are the codes used by either language:

A .. A (Alphabetic characters - upper & lower case)
n .. C (the 33 control characters)
U .. E (for the entire set of 128 ASCII characters)
n .. L (for the 26 lower-case alphabetic characters)
M .. AN (for any alpha or numeric characters)
N .. N (for the 10 numeric cliaracters)
P .. P (for the 33 punctuation characters)
Q .. AP (for any alpha or punctuation characters)
T .. NP (for any numeric or punctuation characters)
n .. U (for the 26 upper-case characters)

Note that the programmer can use a combination of
pattern match codes for the three pattern match codes
(M, Q, and T) not directly supported in M. Note also
there may be a difference in the pattern match syntax
between the two languages. For example, '? lN'
functions properly in both languages, whereas '?3.5N'
(checks for 3, 4 or 5 numeric characters) and '?.AP'
work in M but not MIIS. Fortunately, the MIIS
pattern match syntax works in most cases in M but
not visa versa, e.g., '?2A1N' functions properly in
either language.

June 1994

Logical Operators

& .. & (And) The use of the logical And is the same in both
languages. Note that the '&' is also used in MIIS as
a minimum operator where '2&3' yields 2. The use
of'&' as a minimum comparison operator will have to
be changed during conversion.

! .. ! (Or) The use of the logical Or is the same in both
languages. Note that the '!' is also used in MIIS as a
maximum operator where '2!3' yields 3. The use of
the '!' as a maximum comparison operator will have
to be changed during convel'Sion.

I I (Not) No change.

SUMMARY

In the authors experience, some of the more frequent sources
of frustration to the experienced MUS/novice M programmer
in writing M code ar~ a) the two spaces needed after a Quit
in M (see Quit above), b) the use of Do instead of Goto, c) the
pattern match syntax, d) character output formatting, e) device
assignment and usage, and f) the need to previously define
variables in M (unless they are used with $Data or in variable
passing). Most of the other syntaxes and conventions are
reasonably easy to remember and the conversion of a MIIS
programmer to a M programmer is not a difficult one.

The above comparison suggests that the conversion of MIIS to
M, though not painless (costless), can be accomplished with
minimal retraining of the MIIS programming staff, enable the
use of more off-the-shelf software and less expensive and more
expandable hardware, and enable the use of the advanced M
features on micro-computers, i.e., GUI and X Windows.
Converting from MUS to M, though not a painless operation,
is a task whose time has come.

REFERENCES

MUS Reference Manual, Version S.MUS.R-U-1.1, Medical
Information Technology, Inc., 1980.

Standard MUMPS Pocket Guide, MUMPS Users' Group
(MTA), 1990.

June 1994

MIISTM

POLYLOGICS

MUMPS

We turn running MIIS programs into running
MUMPS programs. Efficiently, with maximum
accuracy and minimum down-time.

MIIS in, MUMPS out. That's all there is to it.

We specialize in MUMPS language conver
sions. We also convert MAXI MUMPS, old
MIIS, BASIC and almost anything else into
standard MUMPS. Polylogics will be there with
experienced project management, training
and documentation.

So, give us a call today. Ask for a free demon
stration on a few of your programs. That's all
there is to it.

POLYLOGICS CONSULTING
136 Essex Street
Hackensack, New Jersey 07601

Phone(201)489-4200
Fax (201) 489-4340

MIIS is a trademark of Medical Information Technology. Inc.

Ill COMPUTING 65

