
TECHNICAL
SESSION II

Object Paradigm The Viability of the
for Shared Databa

A Case S
se Applications:
tudy

. Skovira, David F. Wood Frederick G. Kohun, Robert J
Robert Morris College, P

ABSTRACT

While a predominant portion qf the extensive literature on
object programming and technology addresses conceptual
foundations and object terminology, there has been little work
on the issues of non-systems related applications development.
Current object research has lent itself to the issues of software
reusability, with a primary focus on tools directed toward
graphics and graphic user interfaces (GUI). This paper
examines the problems and possible solutions of applying the
traditional object paradigm to the design and development of a
college student housing selection/allocation and management
system by utilizing M.

INTRODUCTION

Over the past twenty-five years the literature on object oriented
technology has presented and discussed both old and new
terminology without the benefit of significant or radical
contributions to the overall object paradigm. The name change
from object oriented programming to the generic object
oriented technology is the result of the expansion of the object
paradigm to include object oriented analysis and design and
object oriented data bases.

The object paradigm is a perspective on software engineering.
It differs from the functional view that procedures with data
structures are the constituents of software systems[l4]. This
view sees parts of a program as separate entities called objects.
These program components or objects model phenomena by
tying together in a bundle the data attributes, operations or
methods, and default state[l2],[13] ofan individual thing,
event, or situation. The paradigm also theorizes about
classification by which is meant data abstraction as classes,
polymorphism which concerns reuse of methods across classes
of objects, and inheritance which refers to the cloning of
attributes and methods thus creating subclasses of objects[l2].

The literature does in fact demonstrate that there is enough of
a disparity over the nature of the object paradigm that,
although virtually every professional recognizes its
advantages, and that vendors will eventually support it, no one

46 Ill COMPUTING

ittsburgh, PA 15219

agrees on how to use it to design, develop and implement a
typical business application [l], [2]. Figure 1 juxtaposes the
disparity in the conceptual basis for the object paradigm.

Figure 1: Sample of Object Oriented Technology
Definitions

Hooch (3) Coad& Page- Thomas (7) Bulman
Yourdon Jones (6) Bulman
f51 f4J

Class A collection Description o Template A type A set of
ofobjects one or more specifying definition. objects with
sharing structur objects with object's defines both similar
&. behavior. common behavior. instance behaviors.
Implementation attributes&. Objects are variables &.
ofa type. behaviors. clones. methods for

objects ofa
class.

Object An entity Object A data Analog to entil)I Encapsulated
expressing (mstance). structure in the wodd. knowledge
precisely define Encapsulated with its Encapsulated about entities.
behaviors. data attnbutes encapsulated representation Implements
Has a state, &. services. operations. of entities entities.
behavior&. An An instance with operations An entity
identity. information ofa class. &. messages. represents a
An instance package&. thing in the
ofa class. its actions. world.

Method Operations Services. Functions or Part of an Operations or
declared as part Actions or operatii;p,s object values of an
ofa class ofan behaviors defined for invoked bya abstract data
object's performed by a class or message. type.
functions. an object. object. Performs the

obiect's actions.

Message Operation don, Message Parameters Invokes
byone relationship. passed to methods.
object Descriptive of an object. A call.
on another. a processing

or service
need.

Encapsul- Information Containment Operation State of an Data are

ation hiding. ofa class' defined in a object united protected
Prevents infonnation specific data with its method from
interaction &. structure. improper
between unlike accessibility. Information access. Forceo
objects. Information hiding. infonnation
Hiding of hiding. hiding.
nonessential
details from
outsidewodd.
Modularity.

Inherit- Sharing of Shared A directed Definition of a

ance structure and/or attributes&. relationship new object
behavior amOJll! services from a from an exislin!
classes&. made parent to object with
objects. explicit a child. minor
Hierarchy of between or A hierarchy. differences.
classes&. among classe,
obiects.

This paper outlines the background of the object paradigm and
its appropriateness to business applications. Then it describes

June 1994

'i:. ,,
;; .

·.•
,;

~

the object analysis and design of an automated object oriented
student housing application. Difficulties with encapsulation
are then discussed. Finally, the authors discuss why they chose
M for the student housing project.

BACKGROUND OF _THE OBJECT PARADIGM

The focus of the object paradigm has been to use a
programming language to define application specific
functionalities. These functionalities are independently
defined, yet are integrated with data structures used to store
the instantiations of the objects that depict instances of "the
real world" [8). However, there are few if any non-system (
i.e., any application as opposed to a GUI, or system tool)

. applications available. It was the lack of an available
application model that led to the inception of a previous
project to detail the pragmatic and conceptual problems with
the object paradigm in the modeling and implementation of a
student housing program.

-'\

As a result, the task at hand was to use the object paradigm as
a basis for the analysis and design of a typical business
application to establish a model. This would allow the object
paradigm to be decomposed from the abstract/conceptual state
to one of functional and pragmatic relevance. In other words,
we wanted to create a business oriented model that would
allow us to document the operating premises and dynamics of
the object paradigm.

Historically, the literature has framed the object paradigm
within the context of systems issues such as reusability of
complex code for graphics and GUis, the data structures
found in the design of databases, and systems tools such as
browsers and editors [9]. References to object technology in
the most current literature, still embodies this system
connotation.

Furthermore, the object technology commercially available
(i.e., the so-called object shells such as ESIOBJECT by
Educational Systems, Inc.), offer both needed and convenient
tools for providing GUI utilizing the popular and user friendly
window and button characteristics. In the effort to develop a
business oriented application, we found that these
commercially available object tools and/or existing
applications provided assistance at the conceptual and what we
define as the system level.

June 1994

OBJECT ANALYSIS AND DESIGN OF AN
OBJECT ORIENTED STUDENT HOUSING

APPLICATION

The student housing application that we chose to model was
initiated by a housing staff member in response to a request by
a group of faculty , undergraduate , and graduate students for a
project of suitable complexity. The application involves the
design, development, and implementation of an automated
object oriented housing selection/allocation and management
system. There are two principal functions which the
application performs.

The first function is to allow staff members to define particular
constraints for rooms, floors, suites or buildings. Constraints
may be applied at any level. Examples include having a
building designated as Freshman only or a floor designated for
male students only or a particular suite designated for
members of a particular fraternity or sorority.

The second function is to allow students to select their own
room visually. The student can look at a map of the campus,
view a particular building or floor, and eventually designate
the room they wish to be assigned. If all constraints applied to
the room are satisfied, the room will be assigned.

The object oriented features which are enabled are provided
principally by two routines. The first, "method, is designed to
call any method in any object. If that method is not present,
the "method routine searches all antecedent classes of the
desired object to execute the desired method. Thus "general
specific" inheritance is implemented and polymorphism is
facilitated.

The second routine $$"attrib is an extrinsic function to find an
attribute of any object. If this attribute is not defined in the
target object, $$"attrib searches any other objects to which the
object is assigned. This implements "whole-part" inheritance.

Thus, a Room can report attributes of its assigned floor and
building to see if a student meets its constraints. Each object
stores data in a branch of the M global assigned to it. This data
can be imported, exported, or linked to other college
information systems. Figure 2 portrays the classes of objects

M COMPUTING 47

~
fl
'jj

il
~I r
r
i'

t
I
i
I"
'l
I

I
·1,

I
i

I -----------------------1
with attributes and methods that may be applied to the class
objects used in the Student Housing system.

Figure 2: Classes with Attributes and Methods of
Student Housing System

Student

Name
SSNumber
MealPlan
Groupld
BirthDate

Class
HomeAddres
Home Phone
Parent Phone

NTermsEnrol
NTermsHousi

Major
Degree

HealthConditi
Smoking

NsmokingRm
RmMateReqL

AddStu.dent
DeleteStuden
DisplayStude
PrintStudent

DataBase

Display Report
PrintReports

Floor

RoomList
NumberMale

NumberFema
OpenBreak

DisplayFloorPl
DisplayMemb
PrintMember

Room
MuCapacit
CurrCapacit

PersonList
PhoneNumb

MailBox
RoomNumbe

PhysicallyChall
RoomType
Available

DisplayPictur
DisplayMemb
PrintMember

Building

FloorList
Requirement

DisplayCampus
DisplayMembe
PrintMember

Display Floor

Suite

GroupName
Requirement

RoomList

DisplayFloorPl
DisplayMemb
PrintMember

DIFFICULTIES WITH ENCAPSULATION

We encountered difficulty in the issue of encapsulation.
Encapsulation is the protection of a program component or
data, here objects, from improper access and use[l5]. This
was a critical point in the development of our application
within the context of the object perspective. We soon
discovered an apparent inconsistency with the traditional
object paradigm which assumes physical encapsulation of
objects. This renders non object oriented systems incompatible
with object oriented systems. We found it both unworkable and
inconceivable to incorporate (encapsulate) all relevant data
within the appropriate objects. For example, it would be
ineffective to have each of the nine hundred students' data
(i.e., social security number, first, middle and last name) to be

48 Al COMPUTING

I
I

combined with the programming code that defines the object. I.
It is also impractical to expect to redo non object systems as
they currently exist as object oriented systems.

While the traditional object paradigm regards the code that
defines the object and the data utilized by that code as
inseparable, we found this unacceptable and unrealistic in a
business oriented environment utilizing extensive databases.
In order to satisfy the requirements of the student housing
system and the object paradigm we solved the encapsulation
problem by operationally distinguishing between physical and
logical encapsulation.

Physical encapsulation is the traditional perspective on
viewing the ownership of the data by the object. Logical
encapsulation embodies the same conceptual inseparability of
object and data, yet is consistent with the physically separate I
databases common in business environments. Although the
data is not physically part of the object, it is logically tied to
the data contained elsewhere (i.e., a database). It is in fact as
inseparable as is in the case of physical encapsulation to the
extent that if the object is deleted, the data as it was logically
defined is also deleted. However, the advantage is in that the
data is still physically present and available for other applica
tions. This is the conceptual equivalent of a data view.

It must be stressed that physical encapsulation as an integral
part of the traditional object paradigm historically developed
with systems applications as a focus. The parallel
development of large scale centralized databases and the need
for an organization to have access to such data questions
whether the traditional object parachgm is compatible with
contemporary organizational information processing needs.

M AND THE STUDENT HOUSING PROJECT

The technical considerations of a programming language that
supports logical encapsulation and allows for the conceptual
integrity of the object paradigm must be considered. That is
why we chose M (Formerly MUMPS -- Massachusetts General
Hospital Utility Multi-Programming System) as a language
that fulfills the technical requirements of having the
characteristics of an operating system, a programming
language that can be highly structured, and an architecture
that incorporates an integrated data structure facilitator
(database) to act as our developmental language [11]. In
particular, one feature of the language, the global, is uniquely
suited to object programming and the issue of encapsulation.

As a result, there are three basic ways of treating object
encapsulation in M. The authors feel that first could be called

June 1994

-
true physical encapsulation. In this case, a tool is needed
which allows object instances to persist as permanent entities
or globals. Then both the attributes of the objects and their
methods are treated as structures saved within the object. The
actual physical representation of the object is not generally
known to the programmer, and the object can only be dealt
with in the context of the object oriented application. This
also requires a run-time module or translation tool to execute
the methods.

The second method of encapsulation is pure logical
encapsulation. All data for an application would be contained
in one database object which is represented as a large (rather
traditional) M global. Each of the classes in the application
system are represented as routines which send messages to the
database object which manipulates the global. Thus, this
application could easily coexist with other non-object M
applications currently using the database. Thus, the database
is not physically encapsulated.

The third method of encapsulation is a hybrid of the above
two. In this method, each class is represented as both a
routine and a global~he global contains all the instance
values of all attributes of a class, and the routine contains all
methods of the class. This separates the data into separate
physical objects (globals) which represent a class, and yet it is
still available for external non-object routines to access.

We chose the third method of encapsulation for our student
housing model. The class BUILDING will be used to illustrate
this method of encapsulation because it is the simplest one of
the objects. As mentioned before, an object of class
BUILDING along with another class called FLOOR and a
third called ROOM which deal with more specific component
objects. These classes together wholly describe the state of all
dormitory buildings on campus.

The data for BUILDING is encapsulated in the M global "bldg
and is indexed by the building name. Specifically,

"bldg(name,l) -- filename for bitmap of building's picture
"bldg(name,2) -- list of floors belonging to building
"bldg(name,3) -- list of requirements for those in bldg (for

instance
CLASS=FRESHMAN,SEX=MALE,GROUP=ATHL

ETE etc.)

The methods for BUILDING are encapsulated in the routine
hsebldg. These methods use OT-Windows for communication
with WINDOWS 3.1 windows, dialog boxes and picture

June 1994

displays. Figure 3 lists some of the methods in the routine
hsebldg that are used to support encapsulation.

Figure 3: hsebldg routine

add + getdata -- adds a new building
display -- displays a floor map of the building
prmembers -- prints list of students assigned to building (by
calling each floor in turn to print out its students)

hsebldg;dfw;ll:27 PM 21 Feb 1993;
,
; Methods for Class Building
QUIT

exists(name); returns 1 if name exists, 0 otherwise
i '$d("bldg(name)) w !,"Unknown building ",name,! q 0
e q 1

add; adds new building
w ! , "Selected: Adding New Building ... ",!
s did=$get(dialog(wid,mid)) i did="" BREAK
uDTW
w /wuse(l,1,2),/wsettext("") ;Clear Name
w /wuse(l,1,4),/wsettext("") ;Clear bitmap file
w /wuse(l,1,6),/wsettext("") ;Clear floor list
w /wuse(l, 1,8),/wsettext("") ;Clear clear requirement list
w /wuse(wid,did),/wopendialog
uO
q

getdata; Results of the add dialog box
w !,"Adding New Building Dialog",!
uDTW
kc
s stop=O
f d istopq
. w /wgetmessage(.x) ix="" q
. i +x=5 s stop= 1
. i +x'=22 s x="'' q
. s data=$p(x,$c(22),5,999)
. s n=+$p(data,$c(22),2) ; number of messages coming
. fi=l:l:n f d ix'="" q
.. w /getmessage(.x) i x="" q
.. i +x'=22 s x="" q ; only control messages count
.. s id=+$p(x,$c(22),4) ; control id
.. s c(id)=+$p(x,$c(22),6,999) ; data
s name=c(2)
s "bldg(name,l)=c(4)
s "bldg(name,2)=c(6)
s "bldg(name,3)=c(8)
uO
q

Ill COMPUTING 49

display(name) ; show floor map picture of building name
w !,"Create Child-Window displaying building ",name,!
if'$$exists(name) q
uDTW
w /wuse(wid)
w /wcreate(201,5,5,400,250,name,2,8+ 16+64+256)
s bmp="bldg(name,l); define bitmap file
w /wuse(201),/wicon(1),/wdrawbitmap{0,bmp,0,0)
u0
q

prmembers(name) ; print list of students in building
n c,i
sc=","
if '$$exists(name) q
fi=l:l s floor=$p{"bldg(name,2),c,i) q:floor="" d
. d prmembers"hsefloor(name,floor) ; call prmembers in
floor
q

CONCLUSION

What began as a directed study seminar developed into a
research project which not only uncovered a greater number of
questions than it provided answers but also led to greater
application challenges. Important issues that surfaced
included: the appropriateness of the traditional object
paradigm to non-system related applications, the usefulness
and effectiveness of the commercially available object shells,
and the resolution of conceptual/practical considerations in
the design and development of object oriented application
systems.

Although the business oriented application in object form is
distinct from the physically encapsulated data/object model,
the use of the M programming language, with it's inherent
global data structure, allows for a hybrid logical encapsulation
that provides object advantages within a database driven
business environment. As a final point, the time in developing
an object oriented business application seems inordinate to its
final form. However, it forces the designer and/or application
maintenance person to view the application from a holistic
perspective. This enhances the ease of maintenance and
modification of the application from which the economic
benefits of the object oriented system can be realized.

REFERENCES

[l) Gall, Don. (1992). "Object Oriented Programming,
MUMPS and the Real World." OOPSLA Proceedings.

SO Al COMPUTING

[2) Rentsch, T. (1982). "Object-Oriented Programming."
SIGPLAN Notices, Vol 17 (12), p.51.

[3) Booch, Grady. (1991). Object Oriented Design with
Applications. Redwood City, CA: The Benjamin/Cummings
Publishing Co.

[4) Bulman, David W. and Bulman, Erin Kathleen. (1992).
"Things, Objects, Entities, and Knowledge." Computer
Language. January 1992, pp. 44-48.

(5) Coad, Peter. and Yourdan, Edward. (1990). Object
Oriented Analysis. Englewood Cliffs: Prentice Hall.

[6] Page-Jones, Meilie, Constantine, Larry L. and Weiss,
Steven. (1990). "Modeling Object-Oriented Systems: The
Uniform Object Notation." Computer Language. October
1990, pp. 69-87.

[7] Thomas, Dave. "What's in an Object?." Byte. March
1989, pp. 231-240.

(8) Kohun, Frederick G. and Skovira, Robert J. (1993). "The
Analysis and Design of an Object Oriented Payroll
Application: A Validity Test for the Object Paradigm."
NEDSI Proceedings.

[9] Schuller, G. (1991). "A Proposal for the Future
Development of MUMPS as an Open, Distributed, Extensible,
Object-Oriented Data Processing System." Unpublished paper.
University of Wurzburg Computing Center.

(10) Aranow, Eric. (1992). "Object Technology Means
Object-Oriented Thinking." Software Magazine. March,
1992. ~

[11] Harvey, William and Kohun, Frederick. (1993).
"MUMPS." Encyclopedia of Microcomputers. New York:
Marcel Dekker.

[12) Rumbaugh, James et al. (1991). Object-Oriented
Modeling and Design. Englewood Cliffs, NJ. Prentice Hall.

[13) Firesmith, Donald G. (1993). Object-Oriented
Requirements Analysis and Logical Design. New York. John
Wiley & Sons.

[14] Coleman, Derek et al. (1994). Object-Oriented
Development: The Fusion Method. Englewood Cliffs, NJ.
Prentice Hall.

[15) Coad, Peter and Yourdon, Edward. (1991). Object
Oriented Design. Englewood Cliffs, NJ. Prentice Hall.

June 1994

