
-

" II
)le
ke

im
re!

TECHNICAL
SESSION II

PROCESS IMPROVEMENT FOR SOFTWARE DEVELOPMENT
AND MAINTENANCE IN SMALL ORGANIZATIONS

By Lee Bolleter, Texas Children's Hospital, Houston, Texas

Abstract

Process improvement for software development and
maintenance has roots in manufacturing, engineering, and
science process improvement. Process improvement is a
continuous cycle of:

o understanding
o change
0 control
o automation.12

Increased productivity, predictability, and adaptability are
desired benefits bf continuous improvement 10

• Another
reason for implementing continuous change in the form of
process improvement is the generally poor record software
development and maintenance has for product quality,
product timeliness, or both. 13

To implement process improvement one takes
measurements of the software development and maintenance
processes. Measurements of the software process, or metrics,
and the subsequent analyses indicate areas to change for
improvement. There are many methods of metrics analysis
available. These methods depend on the degree of emphasis
of each of the multiple goals specified.

The Software Engineering Institute (SEI) along with
Watts Humphrey is a forerunner in the field of software
process improvement. The SEI method of process
improvement uses stepped levels to progress towards process
maturity.

This paper focuses on the smaller development and
maintenance shop in contrast to the vast majority of material
on software process improvement. The last section provides
general suggestions for Programming and Development
Groups for the implementation of software process
improvement. The material discussed is also applicable to

almost any information systems related group willing to
change and improve.

Description of process improvement

A. The basics

Process improvement in software development is
probably one of the more difficult areas for the Quality
Improvement discipline because of the newness of the
computing science field. For comparison, software
development has been around for a few decades and civil
engineering has been practiced for over two thousand years.
One can model quality improvement benefits from the
engineering and manufacturing areas to the software
development and maintenance discipline. This will reduce
the time and effort required to develop process improvement
techniques for software.

Process improvement for software development and
maintenance specifies that one must define the process,
measure the process, and continuously improve the process in
a cyclical manner. A process is the steps one takes to perform
a task. Process improvement has been part of the
manufacturing and engineering disciplines for ages. Henry
Ford and Japanese manufactures achieved great successes
with the ideals of defined, monitored, and continuously
improved processes. Companies including HP and AT&T
migrated process improvement strategies from manufacturing
to software production.

Definition of the process is the first step. This is not
a trivial step but something that nearly everyone recognizes as
a necessity, and a task that should have already been
completed. While it may not be feasible to make procedures
for everything that is being done in a shop today, it is worth

1994 • June 1994 Al COMPUTING 33

the effort to attempt a cultural change. A starting point of the
present time can be used to require proper documentation on

all further activities. Reviews are needed on all new

procedures until a general consensus is obtained, then reviews

can be decreased. Too much documentation can be an

overwhelming burden. 13 The people involved are the experts

and will know how much documentation is necessacy.14 Find
related examples of high quality concise process definitions

and model new documentation from the examples.

B. Knowledge capture

The definition of a process makes the process

available for others to learn. Sharing of knowledge is
particularly important in the field of software development

because of the fast pace and newness of the field. The

software development field can be very closed and unsharing.
Jargon exists to describe some practitioners and acts, for
example, gurus, wizards, and magic. Many reasons keep

software professionals from not doing a professional job and

not recording process methods. These reasons include

unrealistic time constraints, job insecurity, personal

insecurity, intolerance of another's experience level or

expertise, and so on. An effort must be made to collect and

maintain unique project and product knowledge. Knowledge

capture will ease the eventuality of project reassignment,
personnel turnover, and further work on the project.6

C. The type of problem process improvement addresses

Process improvement is not a "silver bullet" solution
to all the problems of a programming department. In the

paper "No Silver Bullet: Essence and Accidents of Software

Engineering," Frederick Brooks Jr. describes two basic types

of hurdles facing software engineers. Brooks divides them

into:
1. essence " ... the difficulties inherent in the

nature of software."
2. accidents " ... those difficulties that today

attend its production but are not inherent. 4"

Technological solutions such as improved languages and

better programming environments address the accident type

of difficulty but do not address the difficulties with the

34 M COMPUTING

essence of software production. An essential quality of
software is that with increasing system size there is a greater

than linear increase in complexity and required team

communication. 4 Process improvement addresses the essence
of software production difficulties.

D. Metrics and metrics analysis t
fc

t '. ~
f""·
i

The infamous "lines of code" measurement has not gone away f
despite notable shortcomings. 11 "Lines of code" ,; .

Measuring a process is a difficult but essential task.

t: measurements are as controversial as complexity metrics. f
•·

Measurement of engineering time is subjective. A manager [
Ii'

will probably receive close to what they want to get whether it J-,t

is the truth or not.6 Measurement includes counting: 11
o defects Ii:'

I o accuracy of estimates

o complexity of code
o comments and documentation

o overtime used

o amount of reused modules
0 new modules created that are now available for reuse

The key to process improvement is analysis of the

measurements. A typical item stemming from the initial

measurement and analysis of many manufacturing processes
is that defects need attention as early as feasibly and

economically possible. This will save-a lot of money because

of reduced waste. The same is true in software development.

This is 'Just common sense" but why are there so many errors

in such a high percentage of software produced today? Much
of the answer lies in poor analysis and design. Many defects

in software stem from the continuation of the process of

producing software without a proper understanding of the

function that is being developed.2
•
11

•
12 "For example, a well

designed program to control a missile was designed by
someone who understood missiles. 13

" The point here is that

metrics analyses enable problem resolution at an earlier and

less expensive stage than without metrics analysis.

June 1994

ti
it

I Ii ,l
~"
f&r
Wk'"

i:

R
I' i
I
f i
t~~ t,-r
t
t' r r
J·.
t

Reasons for process improvement

A. General reasons for software process improvement

The goal of software process improvement is to boost
software engineer's efficiency. There has not been any
scientific proof that software process improvement is a
method to increase productivity, but employees throughout
the software departments in HP, AT&T, and other companies
enjoy process improvement. They perceive more control of
the software process, better estimation of the software process,
and better productivity in the software process.11

•
12

•
16

Without a doubt most programmers enjoy producing
software systems to the point of celebration when a system or
piece of a system performs correctly.3 Equally popular is the
notoriety of software production as an art that unfortunately is
very difficult to predict. 2 Software measurements require
consistent and thoughtful application. 12 Metrics analysis
should be done contifiually through the software cycle.
Without metrics and metrics analysis future estimations of
software development and maintenance are doomed to the
same fate as all the past bad estimates. 13 "When you can
measure what you are speaking about, and express it in
numbers, you know something about it~ but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind; it may be
the beginning of knowledge, but you have scarcely in your
thoughts advanced to the stage of science. 13

" It is true that
with more experience better estimates are possible but:

0 without metrics collection (mostly automated) and
analysis of the data there is usually not a trail or
document for others to learn from

o without measurement and analysis of past projects,
future surprises will be more frequent

o new types of projects will be unnecessarily difficult to
estimate. 13

There is the perception in many software shops that
it is not worth the effort to define the processes of
development and'maintenance. Many shops also have the
attitude that it is trivial to define the process and that
procedures are too much trouble to write. Procedures are a lot

June 1994

of trouble to write and the endless tomes frequently produced
are equally worthless. Lean structure for procedures requires
flexibility. 13 The review process should hold in check any
abuses of flexibility. Efficiency requires flexibility. 13

Increases in productivity from process improvement
come from the continuous analysis and improvement of the
process. By tracking defects the root-causes of defects
become visible. The cause of a category of defects could be
nonintuitive.8

•
12 When there are facts and figures to back up

the identification of some activity or lack of activity as a
problem source the solution has a much greater chance of
gaining acceptance.

B. The government's lead in implementing software process
improvement

The United States government is a large consumer of
software. It has made an early start in specifying the quality
of software delivered and the processes used to produce the
software they purchase. 17 The Department of Defense (DoD)
has three quality improvement standards. DoD standard
2167 A outlines how to develop software within the military.

The standard is very thorough and includes at least four types
of suggested testing methods.16 The second standard, DoD
2168, is very important in that it requires a vendor to track
metrics. The standard on " ... defense system software quality
program outlines the elements needed in a contractor's
software quality program (SQP), including objectives,
responsibility, documentation, planning, implementation of
SQP, software quality records, software quality evaluation
records, software corrective action, certification, management
review of SQP, and access to data for review by the
contracting agency.16

" DoD 5000 is the third standard for
software. DoD 5000 is Total Quality Management (TQM) -
A Guide for Implementation. This guide shows vendors how
to implement process improvement and encourages them to
do so. The guide also allows for a vendor disqualification if

the vendor lacks a quality program or has a record of having
a bad product or service. Given that the government is using
software process improvement for software developed
in-house and outside purchased software it is probable that
the private sector will do the same.1

61 COMPUTING 35

How PI can be achieved in software development

A. The focus of this paper

Many books contain information on improving
software processes in programming and development
departments. The differences are great between a large
software department that writes and maintains larger software
packages and a department that supports larger software
packages with somewhat limited development activity. There
is enough of a similarity in the material written about larger
development and maintenance sites to use for smaller
departments.

B. The ISO 9000 standard

The International Standards Organization (ISO) has
developed a set of standards that allow a business to become
certified as providing a quality manufactured product or a
quality service. The ISO 9000 series of standards help a
business define what processes are necessary to offer a quality
product The ISO 9000 standard is very broad and can apply
to almost any business. 14

Certification to the ISO 9000 group of quality
standards is a good first step in software process
improvement. The ISO 9000 standards basically state that a
facility must have procedures, job descriptions, and a chain of
command. "ISO 9000 requires that you simply operate in the
manner that you say you do while meeting certain basic

requirements. 14
" Procedures do not require specific sections

or a set format. The ISO 9000 specification has the point of
view that the employees of the business are the experts about
that business and should know what steps need
documentation. It is common sense to have procedures and
documentation but having an outside party review this
information would probably eliminate many programming
sites from passing certification.

Because the first step in process improvement is
definition of the process, achieving ISO certification will have
positive effects:

36 M COMPUTING

0 will help the customer by showing that the quality of
what is given them is important

0 will help employees to be confident and proud of all of
their organizations work

o will begin the cycle and focus on quality and quality
improvement.14

ISO 9000 is becoming a standard to do business in the
European community. ISO 9000 has gained wide acceptance
with European companies and United States companies that
sell to the European market.

A Metrics Analysis focus for Process
Improvement

A. HP, AT&T and software metrics

The Hewlett-Packard (HP) solution to achieve
process improvement capability does not require the
regimented Software Engineering Institute's steps. The two
books Software Metrics and Practical Software Metrics for
Project Management and process Improvement stress the
collection and analysis of metrics. The HP way of attacking
process improvement is through the careful gathering and
analysis of metrics. The purpose of the two books just listed
are to describe the process improvement effort at HP so that
the reader can implement a similar but custom tailored
approach at their own organizatioif. The HP books describe
the successes and mistakes ofHP's process improvement
efforts over approximately a decade.

Many software process improvement books and
articles have very detailed instructions on how to continue
with developing process improvement at a large software
development facility. The HP references frequently mention
multiple divisions of sixty people each. Since the target
audience is large development groups there are specific types
of meetings preplanned and described in the books.12 A
process improvement effort for a smaller facility does not
need such a large effort because the-communications
problems are not as significant. Similarly the process and
quality groups described by Watts Humphrey are not possible
in departments with less than twenty people.

June 1994

The ten steps to a successful startup of process

improvement from the HP perspective are:

1. "Define company/project objectives for program

2. Assign responsibility

3. Do research

4. Define initial metrics to collect

5. Sell the initial collection of these metrics

6. Get tools for automatic data collection and analysis

7. Establish a training class in software metrics

8. Publicize success stories and encourage exchange

ofideas

9. Create a metrics database

10. Establish a mechanism for changing the standard

in an orderly way. 12
"

B.Metrics

With the metrics focus of the HP process

improvement effort one must decide what data items need

collecting. The metric's must be carefully defined and

verified. Failure to do so will invalidate the analysis results

because one is in a situation of comparing dissimilar items. If
the metrics definitions change then comparison with the

previously collected data is not possible. The

goal/question/metric paradigm is discussed in the analysis

section of this paper. A very good list of goals, questions, and

associated metrics are in appendix 2 of this paper. "Without

such measures for managing software, it is difficult for any

organization to understand whether it is successful, and it is

difficult to resist frequent changes of strategy. nn

Quantification of Ambiguity is possible. The four

types of ambiguity are:

1. problem-statement or analysis - confusion in what

the problem is

2. requirements or design - confusion in how the

problem will be solved

3. design-process or method of solution - confusion

about the particular process to solve the problem

4. final-product - confusion in the solution to the

problem.7

To measure ambiguity one must poll qualified individuals on

different bases of the project. For example, the number of

June 1994

modules a section of a requirements analysis would require or

the amount of time and number of people required to code

and test a specific :function. Compare the results from the

poll of the same items for a certainty factor or ambiguity

metric.7

The accuracy of programmer metrics is important.

Brooks, DeMarco, Grady, Humphrey, Yourdon, and Yeh

stress that data must be kept confidential and must not be
used for personnel review purposes. 5•6·n,i2,i3,3o,3i To counter

this problem but still enable collection and dissemination of

information:
0 data is collected on an individual basis but is

confidential

o data is reported in group format
0 management is not given access to all metrics
0 reports are approved by the group prior to

distribution. n

Complexity is a very difficult metric. People seem to

disagree on how to measure complexity as if it were a matter

of pride - which it arguably is. One must categorize the types

of complexity to agree on metrics:
0 computational complexity addresses the amount of

time required to compute an answer
0 syntactic complexity is related to the number and type

of commands in a program and the number and

sophistication of the data structures
0 semantic complexity relates to the types of commands

issued and the number of possible execution paths.16

In this age of yearly doubling or more of computational power

for the monetary unit, computational complexity can often

times be deferred or given less priority because of a long-term

perspective. As long as one is cognizant of how their

program works and how it could be more efficient (if needed

in the future), then the tradeo:ff (if present) between

maintainability and execution speed should favor

maintainability.

Syntactic complexity is fairly easy to measure

automatically. Discussions on weights for different

commands and the benefits of certain data structures for the

target application can be fun. The game type situation of

Al COMPUTING 37

setting up complexity weights and measures can easily
involve all the software engineers at an organization.
Semantic measurements show the inherent complexity in the
software measured. Examples are McCabe's cyclomatic
complexity measure and Halstead's effort measurement.

A prudent time to measure complexity is at the
design phase. For a module with a high design complexity
either:

1.

2.

break up the module or
if the module is irreducible the higher complexity
will require an exponentially larger amount of
resources. 5

As number two above states the exponential increase in
required resources is a stiff penalty from which quantification
would be very valuable. Metrics will give a base to compare
the benefits of module simplification.

C. Analysis of Metrics

The possible danger with the collection of metrics is
that the metric may be selected as the way to solve the
problem. Instead careful analyses of the tradeoffs and
interrelations of the specific metric with other metrics and
organizational goals have to be considered. If a project is late
and a supervisor uses the metrics database to discover, in
their opinion, too much time being spent on meetings then
the supervisor could curtail that activity. What might be
happening is that the current project stage requires a high
degree of communication and requires the extra meeting
time. Communication problems can arise from meeting time
being shortened by mandate.

Cl. FURPS and customer satisfaction

FURPS and FURPS+ are HP acronyms used to focus
on customer satisfaction and product quality. The FURPS+
model allows developers a method of task prioritization.
Because of the categorization ofFURPS+, actions taken are
more easily measured. 11 The components ofFURPS+ are:

o Functionality
o Usability
o Reliability

38 IA COMPUTING

o Performance
o Supportability

A more detailed breakout ofFURPS is in Appendix 1 of this
paper. 11 Obtaining metrics on FURPS+ progress is
important. Quality surveys are one method of getting data
and interviews are another method. Suggested guidelines for
conducting a survey are in Appendix 2 of this paper.

C2. The 3 HP market focuses

HP uses a measurement and evaluation paradigm
invented by Victor Basili of the University of Maryland. The
paradigm defines major business strategies for a software
organization. Even if an organization is not in the business
of selling software the perspective is still useful. The
paradigm uses three focuses:

o Minimize engineering effort and schedule
o Maximize customer satisfaction
o Minimize defects.

The chart in appendix 3 presents timing, usefulness, metrics,
and drivers for the 3 market focuses. Appendix 4 lists
questions and associated metrics for each process focus.

C3. Minimizing engineering effort and schedule

In these times of increased emphasis on efficiency
and cost reduction, the focus on minimizing engineering
effort and schedule is frequently tlsed. The fine line to
balance in minimizing engineering effort and schedule is to
keep the goals of cost and schedule high on the software
engineers' lists of priorities but not create a situation where
compromises in functionality are deemed necessary. 11 Robert
Grady suggests that this perspective is particularly useful at
the middle part of a project. After system analysis, the codini
phase of a project can be streamlined to get the best first draft
Defects are removed from a functionally complete system. 11

This is identical to the method many instructors suggest for
writing a paper or letter.

Minimizing engineering effort and schedule does no
preclude the investment of time for future payoff in decreasec
maintenance requirements. A complexity study on a system
requiring a high degree of maintenance will highlight the
modules most likely causing problems. 11 The higher

June 1~

I

.g
t.

)t

d

>4

complexity modules will quite possibly have higher error

rates. Further modifications should stress decreasing the

complexity of the code. Modifications to portions of the

system that are "more complex" are repaired or replaced with

code that is less complex and more easily maintained. This

will save time and effort in some situations.

The preceding paragraph illustrates a situation of

correcting a design flaw. At HP the analysis of certain

metrics have shown 11
••• potential downstream costs of as

much as two engineering months for each design defect 11
"

Pressure for high productivity is an effect of the focus to

minimize engineering effort and schedule. "True productivity

also includes other aspects such as quality, time to market,

and long-term investments such as design for reuse. 11
"

C4. Quality Function Deployment

Quality Function Deployment (QFD) represents a

proposed software system from the customer's perspective. A

QFD analysis pushes the software engineer into the

perspective of the customer. Weighted values show priorities

in customer needs. For further examples of QFDs refer to

references 11 and 16.

Minimizing defects entails fairly straight forward

metrics and analysis. One needs to define and measure

defects though different project cycles. Comparison of

project metrics will point out weakness' in the process that

cause defects. Graphs are very important in defect trend

analysis.

C5. AT&T analysis methods

Hsiang-Tao Yeh lists some very illuminating

questions and problems that stem from possible "wrong"

answers about a shop's condition (appendix 4). The book also

suggests certain best current practices (BCPs):
o customer satisfaction surveys

o project estimation tools (metrics)

o written procedures

o rapid prototyping

o build on a reusable platform

June 1994

0 analysis, design, code, and test inspections
0 root-cause defect analysis
0 post-project reviews.16

C6. Goal/question/metric paradigm

Another technique used at HP is the

goal/question/metric paradigm. An example of a question

line is "How accurate are our estimates?" and "What is the

trend?" The question is hopefully answerable through the

metrics data. In this case a graph comparing estimates and

actual results over time is appropriate. There are many

examples of very insightful questions, metrics, and graphs

throughout both HP and AT&T books. 11
•
1
2,

16 See appendix 4

for a list of goals, questions, and metrics. An important point

to be.gin a metrics program is to ask questions about the

groups goals and to look for differences and similarities

between the examples and lessons pointed out in the HP and

AT&T books and the organizations current situation.

The Software Engineering Institute (SEI)
Process Improvement Model

A. Introduction to SEI

The SEI model for process improvement requires a

lot of work just to implement their brand of process

improvement. One must weigh the suggestions and

sequences provided by each step of the SEI model with the

perceived need of their own organization. Watts Humphrey

invented the five ascending SEI process levels. The SEI

process levels are:

o level 1 - Initial
0 level 2 - Repeatable

o level 3 - Defined

o level 4 - Managed
0 level 5 - Optimizing. 13

B. Level one, and change management

The initial level organization has problems in cost

overruns, schedule overruns, and poor quality. This level is

also called the ad-hoc stage because each project is handled in

M COMPUTING 39

an arbitrary manner with little or no effort to learn from the
past. This level lacks measurement and analysis of software

production and maintenance activities. "Until the process is
under statistical control, orderly progress in process
improvement is not possible. 13

"

The following detailed steps allow an organization to
get past the initial process level:

1. "Plan the work.
2. Track and maintain the plan.
3. Divide the work into independent parts.
4. Precisely define the requirements for each part.
5. Rigorously control the relationships among the

parts.
6. Treat software development as a learning process.
7. Recognize what you don't know.
8. When the gap between your knowledge and the

task is severe, fix it before proceeding.
9. Manage, audit, and review the work to ensure it is

done as planned

10. Commit to your work and work to meet your
commitments.

11. Refine the plan as your knowledge of the job

improves. 13
"

The above steps implemented on successive projects will keep
the same types of problems from reoccurring. To go from

the first to the second process level a group must implement
proactive project management, effective management
oversight, begin quality assurance measures, and implement
change management.13

A process level assessment is an important first step
for a strict SEI approach to process improvement. An outside
group should perform the evaluation because of objectivity

although a procedure for self evaluation is in the book
Managing the Software Process.

Careful change management is a key improvement
to an organization's process to bring it above the initial level.
Without review of changes (meaning before commitment)

work completed may be lost and schedules will probably be
adversely affected - possibly without the requester's
knowledge. A part of the desired outcome is to get the user's

40 IA COMPUTING

attention and make them think about the product being
developed. Changes to software are reviewed from the
analysis and design perspective to completely understand the

impact of the change and to protect from the introduction of
errors. 13 Software is frequently produced in a highly

dynamic environment making change management difficult
yet mandatory. The methods for controlling change include:

0 careful analysis and design
0 careful review of the analysis and design
0 identification of volatile design areas before coding
o use of prototyping
0 ability to delay the change until the next release
0 use of rigorous software engineering.2

The benefits of change control are:
0 project schedules become more achievable
o error rates decrease
0 programmers are happier because schedules and

defects are more controllable.13

C. Level two and level three

The second SEI process maturity level, the

repeatable level, has stability of process allowing schedules
and budgets to be accomplished on routine projects. An
organization at the repeatable level is capable of fairly
consistent project successes because of basic management
control. The repeatable level does not have the ability to

handle new and different situatidns with predictable results
because it is only repeating the processes of previous
accomplishments.13

To ascend from the repeatable level an organizatior
needs to define the software process to the point that there is
the capability to handle new types of projects effectively.

While this does not entail volumous tomes of procedures, it

does require:
0 forming a process group - this is a special group that

in a large organization can concentrate on, and is
solely responsible for, process improvement

0 reviews and inspections to enforce standards and

provide consensus
o formal testing procedures
o initial use of software engineering technologies. 13

June 1

-
"By way of analogy, Humphrey describes the

differences between the levels by comparing different forms

of advice that one might get when navigating to an unknown

destination, for example, navigating from a downtown hotel
in a strange city to an airport at the edge of town. In the level

1 organization, the driver doesn't ask for directions at all, but

simply trusts his luck and intuition. The level 2 organization

is comparable to the situation where the driver receives verbal

instructions, for example, ""drive 2 miles until you see a gas

station on the right, then take a right and go four traffic

lights, then ... "" problems with this form of navigation are
(1) you don't know that you have made a mistake until it's too

late and (2) once you do realize you've made a mistake, it's

quite difficult to get back on the right path again. The level 3
organization, which we'll discuss next, is comparable to the

driver with a road map: the written document not only helps

her determine where she is, but also makes possible
midcourse corrections. 17

"

At the third1evel an organization has defined their
process. Development of a foundation to enable the next two

levels abilities for continuous process improvement occurs at

the third process level. Everyone in the organization knows

and uses the written standards and procedures. 13 There is a
cultural attitude requiring quality and pride in work
performed. During the third level phase the following occurs:

o reporting of quality assessments to management
0 implementation of a process metrics database

o quality assessment studies of products.

D. Level four and level five

The fourth level is the managed level. An entity at

this level has a metrics program and is ready to benefit from

the analysis of the data collected. 13 The metrics collected are
beyond person hours, lines of code, and function points. See

section V, part B of this paper for more information on
metrics. The level four organization has quantified goals for

software projects and can measure degrees of success.

At the fifth process level metrics analyses provide

direction on ways to optimize the software process. Metrics

June 1994

analysis allows continuing optimizing of the process. This
level is also called the optimizing level.

One cannot hope to jump from a level one or two to
a level five in a period of months - a couple of years is a very

fast track because of the required change in culture to that of

quality orientation. It is also generally impossible to start an

organization at the fourth or fifth level because:
o standards are required

o procedures are required
0 metrics must be captured
0 a history of metrics must be available for analysis (to

guide process improvement).13

The use of object-oriented programming or the purchase of
CASE workstations will not effect a change from one level to

the next. 13

General Suggestions

1. Pursue ISO 9000 certification. This is not a call

for a large increase in the amount of

documentation required. Find examples of

topnotch, lean documentation and use them as
models. "You're the expert" when it comes to what

is needed. 14

2. Use appendix 3 (goal/question/metric paradigm) to

extend the suite of metrics already collected.

Remember to emphasize automatic collection of

metrics.

3. Expand metrics activities with an emphasis on
automatic collection.11

•
1
2.

13
•
16

4. Expand the review process of projects - especially

the design and analysis review, and the

post-project review. Emphasize this because

reviews build consensus and standardization better
than multitudes of procedures. u,,2,13

,
16

5. Perform an analysis of a process repository

including knowledge capture. Include a method

such as automatic electronic mail to distribute new

information.

M COMPUTING 41

t

---f p

6. After six months of extended metrics collection
form a process group assigned to use the data for
improvement.11

•
12.

13

7. Seriously increase effort for the creation and
sharing of reusable code. 3'

13
'
16

Summary

Through the extra effort of software process
improvement an organization stands to benefit from increased
productivity. The documentation required to define the
process should already be available. Analysis of metrics and
improvement of software processes will increase efficiency.
The initial upfront effort required for process improvement
will be paid back with decreases in errors and the other
positive effects just mentioned. While the application of
process improvement to the software development and
maintenance field is relatively new, it will become standard
practice in the near future.

Appendix 1

Expanded FURPS+ definition:
"Functionality

o Feature Set
0 Capabilities
o Generality
o Security

Usability
o Human Factors
0 Aesthetics
o Consistency
o Documentation

Reliability
° Frequency/Severity of Failure
o Recoverability
o Predictability
o Accuracy
o Mean Time to Failure

Performance
0 Speed
o Efficiency
0 Resource Consumption

42 Al COMPUTING

0 Thruput
o Response Time

Supportability
o Testability
o Extensibility
0 Adaptability
o Maintainability
o Compatibility
o Configurability
o Serviceability
o Installability
0 Localizability11

"

Appendix2

"Guidelines for creating surveys and interviews:
0 Define what goals are for the survey, what questions

must be answered, how the data will be analyzed, and
how results will be presented. State or graph sample
conclusions.

0 Test the survey and your method of data analysis
before sending it out.

0 Ask questions that require simple answers, preferably
quantitative or yes/no.

° Keep surveys short (preferably one page).
0 Don't send surveys with other material so they won't

get lost in the shuffle.
0 Make them very easy to retum (for example, a fold

and seal, prestamped from).
° Formulate at least one question from each of the

FURPS+ categories.
0 Customer interviews are generally more accurate than

surveys -with enough data11
"

June 1994

f
!.
I
t
i:::

};

f
i
i
I
fl
\!,

I
I
I
i

I
I
I

-

d

Appendix 3

"Major Strategies of a Software Business""

MAJOR CHARACTERISTICS MAXIMIZE CUSTOMER MINIMIZE ENGINEERING MINIMIZE DEFECTS
SATISFACTION EFFORT & SCHEDULE

MAJOR BUSINESS FACTOR Attempt to capture market share Competitive pressures forcing new Holdfmcrcasc market share
product development or cost control

WHEN MOST EFFECTIVE When initially entering market When there are several competitive When features arc competitive
products or you sell more profitable and adequate market share is
products held

CHARACTERISTIC FEATURES Customer communication quick Focus on delivery dates and effort Analysis and removal of
responses defective causes

MOST VISIBLE METRICS Survey and interview data, product Calendar time, engineering effort, Failure analysis by module,
metrics, defects defects cause & severity; size ; code

coverage

GROUP MOST LIKELY TO DRIVE Development team initially, customer Division company management Development team and/or
STRATEGY support later quality organization

GROUP MOST LIKELY TO BE IN Development team Marlceting/factory customer support Field support organization
DIRECT CONTACT WITH CUSTOMER

POTENTIAL DRAWBACKS IF FOCUS Process of developing products may not Defect backlog can get Defects may be fixed that arc
TOO~CTED improve

Appendix4
"GOAL: MAXIMIZE CUSTOMER SATISFACTION

Ql. What are the attn"butes of customer satisfaction?
M Functionality, usability, reliability, performance,
supportability (FURPS)

Q2. What are the key indicators of customer satisfaction?
M. Survey data, Quality Function Deployment

Q3. What aspects result in customer satisfaction?
M Survey data, QFD

Q4. How satisfied. are customers?
M Survey data, customer visit data, number of
customers severely affected by defects.

QS. How do we compare with the competition?
M Survey data, QFD

Q6. How many problems are affecting the customer?
M Incoming defect rate
M Open critical and serious defects
M Break/fix ratio (count of defects introduced
versus count of defects fixed)
M. Postrelease defect density

June 1994

unmanageable; customer and not cost effective

Q7. How long does it take to fix a problem (compared. to
customer expectation and commitments)?

M Mean time to acknowledge problem
M Mean time to deliver solution
M Scheduled. versus actual delivecy
M Customer expectation (by severity level) of time
to.fix

Q8. How does installing a fix affect the customer?
M Time customers operation is down
M Customer's effort required. during installation

Q9. How many customers are affected by a problem? (and
how much?)

M Number of duplicate defects by severity
QlO. Where are the bottlenecks?

M Backlog status, time spent doing different
activities

GOAL: MINIMIZE ENGINEERING EFFORT AND
SCHEDULE

QI 1. Where are the resources going? Where are the worst
rework loops in the process?

M COMPUTING 43

I
I
j
i

I

M. Engineering months by

product/component/activity

Q12. What are the total life-cycle maintenance and support

costs for the product (and how distributed by time and

organization)?

M. Engineering months, product/component/activity

M. Engineering months by corrective, adaptive,

perfective maintenance

Q13. What development methods affect maintenance costs?

M. Prerelease records of methods and postrelease

costs
Ql 4. How maintainable is the product as changes occur?

When do I give up and rewrite?

M. Incoming problem rate
M. Defect density

M. Code stability
M. Complexity
M. Number of modules changed to fix one defect

Q15. What will process monitoring cost and where are the

costs distributed?
M. Engineering hours and cost

Q16. What will maintenance requirements be?

M. Code stability, complexity, size

M. Prerelease defect density

Q 17. How long does it take to respond to (fix) a defect?
Historically? With new processes? With resource changes?

With complexity and severity variations? For each activity in

process?

M. Calendar time, process and module records
Q18. How can we predict cycle time, reliability, and effort?

M. Calendar time
M. Engineering time

M. Defect density

M. Number of defects to fix

M. Break/fix ratio-historical averages

M. Code stability

M. Complexity

M. Number oflines to change
Q19. What practices yield best results?

M. Correlations between prerelease practices and

customer satisfaction data

Q20. How much do the maintenance phase activities cost?
M. Engineering time and cost

44 Ill COMPUTING

Q21. What are major cost components? What aspects affect

the cost?

M. Engineering months by

product/component/activity

Q22. How do costs change over time?

M. Track cost components over entire maintenance

lifecycle

GOAL: MINIMIZE DEFECTS
Q23. What are key indicators of process health and how are

we doing?

M. Release schedules met, trends of defect density,
serious and critical defects

Q24. What are high-leverage opportunities for preventive

maintenance?
M. Defect categorization
M. Code stability

Q25. Are fixes effective? Are unexpected side effects created?

M. Break/fix ratio

Q26. What is the postrelease quality of each module?

M. Defect density, critical and serious defects
Q27. What are we doing right?

M. Defect removal efficiency (ratio of prerelease

defect density to postrelease defect density)
M. Break/fix ratio

Q28. How do we know when to release?

M. Predicted defect detection based upon prerelease

records and postrelease defeet densities

M. Branch coverage
Q29. How effective is the development process in preventing

defects?

M. Postrelease defect density

Q30. What can we predict will happen postrelease based on
prerelease data?

M. Correlations between prerelease complexity,

defect density, stability, FURPS+, and postrelease

defect density; ability to make changes easily;

customer survey results

Q31. What defects are getting through? What caused those

defects?
M. Defect categorization11

"

June 1994

Bibliography

1. Bollinger, Terry B. and McGowan, Clement. "A

Critical Look at Software Evaluations." IEEE ·

Software. Vol. 8, No. 4, July 1991, pp. 25-41.

2. Boar, Stephen P. and Rush, Tony W. "Rigorous
Software Engineering: A Method for Preventing

Software Defects." Hewlett-Packard Journal,

December 1991, pp. 24-31

3. Brooks, Frederick P. Jr. The Mythical Man Month.

Reading: Addison-Wesley Publishing Company,

1982

4. Brooks, Frederick P. Jr. "No Silver Bullet: Essence

and Accidents of Software Engineering."
Computer, Vol. 20; No. 4, April 1987, pp. 10-19.

5. DeMarco, Tom. Controlling Software Projects:
Management Measurement and Estimation.

Englewood Cliffs: Prentice Hall, 1982
6. DeMarco, Tom, and Lister, Timothy. Peopleware:

Productive Projects and Teams. New York: Dorset

House Publishing, 1987

7. Freedman, Daniel P., and Weinberg, Gerald M.

Handbook ofWalkthroughs, Inspections, and

Technical Reviews: Evaluating Programs, Projects,

and Products. New York: Dorset House Publishing,

1990
· 8. Gause, Donald C., and Weinberg, Gerald M. Are

Your Lights On? New York: Dorset House

Publishing, 1990

June 1994

9. Gause, Donald C., and Weinberg, Gerald M.
Exploring Requirements: Quality Before Design.
New York: Dorset House Publishing, 1989

10. Grady, Robert B. "Measuring and Managing

Software Maintenance." IEEE Software. Vol. 4,

No. 9, September 1987, pp. 35-45.

11. Grady, Robert B. Practical Software Metrics For

Project Management and Process Improvement.

Englewood Cliffs: Prentice Hall, 1992
12. Grady, Robert B. and Caswell, Deborah L.

Software Metrics: Establishing a Company Wide
Program. Englewood Cliffs: Prentice Hall, 1987

13. Humphrey, Watts S. Managing the Software

Process. Reading: Addison-Wesley Publishing

company, 1989.
14. Rabbitt, John T. and Bergh Peter A. The ISO 9000

Book: A Global Competitor's Guide to Compliance
and Certification. White Plains: Quality Resources,

1993
15. Rankos, John J. Software Project Management For

Small To Medium Sized Projects. Englewood

Cliffs: Prentice Hall, 1990
16. Yeh, Hsiang-Tao. Software Process Quality. New

York: McGraw-Hill, 1993

17. Yourdon, Edward. Decline & Fall of the American
Programmer. Englewood Cliffs: Prentice Hall, 199

18. Yourdon, Edward. Structured Design:
Fundamentals of a Discipline of Computer

Program and Systems Design. Englewood Cliffs:

Prentice Hall, 1979

Ill COMPUTING 45

• l
! • 1

i
I
i
I
I
4 ;
,I
I

I
~

l
;I)

I
::I
i
I
I
I
i
i
I
I
I
1
I

I ,
j
I

I
I.
j:
I
§g

i
I
!!

I
I
m

