
TECHNICAL
SESSION I

Referential Integrity in VA FileMan
William J. Harvey, Ph.D.

Institute for Information Management and
Department of Computer and Information Systems

Robert Morris College
Pittsburgh and Coraopolis, Pennsylvania

Abstract

The VA File Manager (FileMan) database
management system provides automated support for
referential integrity. FileMan is examined here with
regard to keys, uniqueness and null constraints,
domains, file relationships, and rules for insertion
deletion, and updating of records affected b;
inclusion dependencies as a special case of
refe~~tial integrity. FileMan referential integrity
prov1s1ons are compared to those for standard
relational (SQL) database systems.

Introduction

The VA File Manager (FileMan) is the most widely
used database management system based on M
technology. Various versions are in use, for medical
and non-medical applications, around the world.
FileMan is menu- and dialog-driven and supports
nested file structures in the form of "subfiles."
Originally developed in the 1970s, FileMan also
offers a word processing data type to permit
recording of physicians' and nurses' free-text entries
in the health care environment. Letters and various
documents can be prepared automatically using data
in the FileMan database. Unlike form letter facilities
in some word processing systems which permit
merging a document only with a single prepared
file, the FileMan form letter system makes it
possible for a form letter to access an entire database
in the merge · process. Winn and Hoye have
described FileMan support for relational database
operations, showing FileMan equivalents for
relational data manipulation operations. 1

Report generator facilities in FileMan can handle the
nested subfiles conveniently. Code generation is
used extensively in FileMan, and the standard data
dictionaries provided by FileMan systems document
source code for triggered database actions, data
validation, and output transforms. A number of
database systems and products are derived from the
FileMan model or use FileMan file structures.

Many M applications are integrated with FileMan.
As an example of the sophistication of current uses

24 Al COMPUTING

of FileMan, a FileMan-based expert system at the
University of Texas M. D. Anderson Cancer Center
carries out automatic validation of research data in
large-scale projects. 2 FileMan stores the required
knowledge bases and the expert system routines are
wri~ in standard M, supporting slots and fuzzy
logic. Rules can be entered which use FileMan field
names to which logical names are ·assigned.

This paper explores the automated provisions of
FileMan technology which support relationships
between files and endeavors to formulate the rules
used by FileMan in maintaining referential integrity.
Certain provisions for referential integrity support,
such as the FileMan pointer-to-a-file data type, have
been present since early versions. To that extent
some level of referential integrity support was
introduced in FileMan far in advance of the
introduction of referential integrity provisions in
SQL in the 1989 standard. Referential integrity in
the relational model, and referential integrity
~pport specified by the SQL ~dards and SQL
implementations, will be used as a basis for
e~amining File~an referential integrity. The paper
will focus on direct use of the database through its
menus and dialog with limited treatment of
embedded use of FileMan in M programming
through calls to FileMan routines (under which
condition certain restrictions may be overridden).
References in this paper are to Version 19.0 of
FileMan.3

Referential Integrity in Relational Databases

Referential integrity applies to database intertable
relationships where there is a common domain from
~hich a primary key (a set of one or more columns)
m one table (e.g. TABLE_A) and a foreign key (a
set of one of more columns in another table
(TABLE_B) both draw values. The set of one or
more column(s) comprising the foreign key (in
TABLE_B) has the same defi.nition(s) as the primary
key column(s) in the first table (TABLE_A). Every
non-null value in the foreign key column(s) of
TABLE_B must exist in the primary key column(s)
of TABLE_ A. In giving a definition of referential

June 199•

t

"

integrity based on domains and keys, Date uses the
qualifier "unmarked" for non-null foreign key
values and specifies that "one or more primarY. keys
draw their values" from the common domain . • :ii

For example, imagine a hospital database (Database
1) with a table of PHYSICIANS in which the
primary key of PHYSICIANS draws on a domain of
physician identifier values and a PATIENTS table
including a column for an
ATTENDING_PHYSICIAN foreign key drawing
physician identifier values from the same domain as
the primary key of PHYSICIANS. Here are two
additional examples (PK=primary key, FK=foreign
key):

Database2
DEPARTMENT(PK DEPARTMENT_ID)
and
EMPLOYEE(PK EMPLOYEE _ID and FK
DEPARTMENT_ID)

Database 3
PA'.;QENT(PK PATIENT_ID) and
TEST(PK TEST_ID and FK PATIENT_ID)

Referential integrity support consists of making sure
that at any point in time there are no non-null
foreign key values that do not also occur in the set
of values in corresponding primary key. The
constraint requiring that the set of foreign key
values in one table (such as TABLE_B above) must
be a subset of the set of primary key values in
another table (such as TABLE A) is called an
inclusion dependency. 5 The table containing the
foreign key (TABLE_ B) is called the referencing
table and the table containing the primary key
referred to by the foreign key is called the
referenced ' table. In database design there is
typically a one-to-many relationship involved in
referential integrity, as for example:

June 1994

Database 1
Each PHYSICIAN has zero or more (many)
PATIENTs
Each PATIENT has one
ATTENDING PHYSICIAN

Database 2
Each DEPARTMENT has zero or more
(many) EMPLOYEEs
Each EMPLOYEE is assigned to one
DEPARTMENT

Database 3
Each PATIENT has zero or more (many)
TESTs
Each TEST is associated with one PATIENT

Since this is sometimes seen as a hierarchical
structure the terms parent table (for the referenced
table) and child or dependent table (for the
referencing table) are also used.

For relational databases, referential integrity support
requires that the following can be declared:

Definition of the primary key as a means of
uniquely identifying a row in a table,
including a rule that primary keys may not
contain null values.

Definition of the foreign key and its relationship
to a given primary key.

Provisions for handling null value requirements.
A rule specifying that no values may be inserted

into the foreign key that do not already exist
in the primary key of the referenced table
(insert rule).

A rule specifying that deletions of values in a
referenced table primary key must not violate
the inclusion dependency by resulting in
"orphaned" foreign key values in the
referencing table for which there is no
matching value in the corresponding primary
key (delete rule).

A rule specifying that updates to a referenced
table primary key must not violate the
inclusion dependency by deleting referenced
values and resulting in "orphaned" foreign
key values in the referencing table for which
there is no matching value in the
corresponding primary key and no values
may be inserted into the foreign key through
an update operation that do not already exist
in the primary key of the referenced table
(update rule).

There must be a provision to declare the columns as
ineligible to receive null values so that any primary
key column (set of primary key columns) can be
required to have only non-null values. Database
design will dictate whether the no-null-values
provision should be applied to a foreign key
definition. In Database 2, if the organization using
the database permits an EMPLOYEE to be, perhaps
temporarily, unassigned to any DEPARTMENT,
then null values would be permitted in the foreign
key.

The ANSI and ISO SQL standards and various SQL
implementations provide syntax such as in the
following examples using the CREA TE TABLE and
ALTER TABLE specifications:

Al COMPUTING 25

Declaring columns may not have nulls:
CREATE TABLE DEPARTMENT
(DEPARTMENT_ ID CHAR(4) NOT
NULL,
...)

Declaring a primary key:
ADD PRIMARY KEY
(DEPARTMENT_ ID)

Declaring a foreign key with a delete rule:
ADD FOREIGN KEY DEPT KEY
(DEPARTMENT_NO)
REFERENCING DEPARTMENT
ON DELETE SET NULL

I

Each column .is specified individually as to any null
constraint. The primary key declaration results in a
uniqueness constraint for the primary key
column(s). According to the uniqueness constraint,
there will be no duplicate values in a primary key. A
uniqueness constraint may be applied to a candidate
key in addition to the primary key, through an
ALTERNATE KEY declaration. Note that the
default declaration of a foreign key, as given here,
automatically targets the primary key of the
referenced table, so that it is not necessary to specify
the primary key column(s) in the foreign key
definition. However, relational database systems
implementing referential integrity support will check
to make sure that the definitions of the
corresponding primary and foreign key columns
match exactly, assuming a common underlying
domain of values for both keys. A foreign key may
reference the table in which it is declared. A
primary key may also be a foreign key.

The following delete rules (rules for deleting
currently referenced rows and implicitly their
primary keys) are accounted for in the SQL standard
or in implementations:

RESTRICT or NO ACTION
SET NULL
SET DEFAULT
CASCADE

More than one foreign key can be declared for a
single table (possibly referencing different tables),
but all foreign keys in the same table must be
subject to the same delete rule category.
RESTRICT, SET NULL, SET DEFAULT, and
CASCADE options can exist for decl~tion of
update rules.

The RESTRICT rule inhibits any deletion of a table
row with a primary key value referenced by one or
more foreign key values in a referencing table.

26 Ill COMPUTING

Organizational policy might dictate, for example for
Database 1, that a PHYSICIAN not be deleted from
the database until after all of his/her PA TIENTs
have been assigned a new PHYSICIAN. Horowitz
distinguishes between the RESTRICT and NO
ACTION rules, considering the NO ACTION rule
as a "soft or implicit restriction. •6

The SET NULL rule permits the deletion of the
referenced row and causes the foreign key value(s)
in the corresponding rows in the referencing table to
be replaced with null values. This could apply to
Database 2 where an EMPLOYEE in a
DEPARTMENT being dissolved could temporarily
be unassigned (represented· by the null value). A
SET NULL declaration should be rejected if the
foreign key column(s) have been declared NOT
NULL or ineligible to receive null values.

The SET DEFAULT rule permits the deletion of the
referenced row and causes the foreign key value(s)
in the corresponding rows in the referencing table to
be replaced with previously declared default
value(s). This requires a provision for declaration of
defaults.

The CASCADE rule permits the deletion of the
referenced row and causes the rows containing the
corresponding foreign key values to be deleted as
well. Because it is possible that an unintended chain
of cascade deletes could be initiated,
implementations place restrictions on the declaration
of cascade delete rules to inhibit aech events. For a
general treatment of "safety" with regard to cascade
deletes, see Markowitz' article on the topic. 7

There is an order to defining and entering values
into tables under the referential integrity constraint.
The referenced table must be declared and its
primary key must be declared before the foreign key
may be declared in the referencing table. Any value
to be inserted into the foreign key of the referencing
table must have been inserted into the primary key
of the referenced table first.

Files and File Relationships in FileMan

The term referential integrity arose in relational
database theory but will be applied here to FileMan,
which is not considered to conform to the relational
database model. Davis characterizes the design of
FileMan as "fundamentally" hierarchical, although it
transcends strict hierarchical architecture. 8 There is
precedent for description of referential integrity
support in non-relational databases in Date's
treatment of the topic for hierarchical IMS databases

June 1994

-

r

14

and for the IDMS database as an example of
CODASYL (network model) databases. 9 Date cites
the rule that "no child is allowed to exist without its
parent," as found in IMS and IDMS, as a form of
referential integrity specifying an insert rule
requiring prior existence of the parent record
(segment in IMS). For IMS, Date mentions cascade
update (replace in IMS) and delete rules and a
provision that nulls are not permitted (as keys).
According to Date, the IDMS rules approximate
foreign key rules on allowing nulls, delete rule
options ("CASCADES or RESTRICTED or
NULLIFIES"), and an update rule of cascade. The
role and properties of referential integrity
constraints in the "relational representation of
object-oriented structures" are treated by
Markowitz. 10

FileMan is examined here with regard to keys,
domains, uniqueness and null constraints, file
relationships (interfile and intrafile), and rules for
insertion, deletion, and updating of records affected
by incklsion dependencies as a special case of
referential integrity. In addition to forms of insert,
delete, and update rules, FileMan provides a
LAYGO (Learn-As-You-Go) access option for the
"pointer-to-a-file" data type. LAYGO is an
automated referential integrity action for insertion of
records into a referenced file. The LA YGO action is
not integral to SQL implementations. When
LAYGO access is enabled, the user editing a
referencing file will be alerted to the fact that a new
value is not currently displayed in a certain
referenced file column and may then decide to have
that value entered in the referenced (pointed-to)
table. LA YGO access can be specified when creating
and defining a field. Nulls are a specific value in
FileMan and in the underlying M programming
language. Nulls are distinct from spaces but are not
marked so that one null is distinguishable from
another.

FileMan supports declaration and maintenance of
domains for fields. Dialogs for basic data types
receive specifications such as upper and lower
bounds (for numeric values), maximum and
minimum lengths (for free text strings), earliest and
latest dates, and pattern match requirements. Certain
defaults are provided to assist in the specification
process. Value checking is implemented through
input transforms. The syntax for input transforms is
displayed in data dictionary listings. Programmers
can design input validation routines.

June 1994

FileMan databases utilize files, rather than tables. In
relational databases, such as SQL, the foreign key
references the primary key of the other table. There
is no concept of user-defined "primary key" as
commonly understood for relational database
technology -- a file cannot be created without
creating a distinguished field (called the ".01" field)
of the type called "mandatory identifier" in
FileMan; the .01 field represents an entity;
additional mandatory or non-mandatory identifiers
may be declared for a file from the fields
established; a record cannot be added to a file
without providing a value for every mandatory
identifier declared for the file; the intent is that the
designer determine which properties of an entity
must be used to identify an instance uniquely and
declare each such property to be an identifier; each
record has an Internal Entry Number (IEN) which
the system uses for unique identification and which
is normally not visible to the user. As Winn and
Hoye and also Davis emphasize, the user of FileMan
is not expected to declare a primary key; this is done
automatically by the system. Follingstad has
described the need for an easily declarable
uniqueness constraint for user-defined FileMan
fields and has provided technical information on
implementing such constraints. 11 FileMan has a
automatic support available only for unique numeric
identifiers. Relationships between files in FileMan
are implemented using a record pointer system
where record pointers (IENs), in combination with
evaluation to extract values from the referenced file,
carry out the function delivered by the foreign key
system in relational databases. Date provides a
description of the distinctions between the use of
foreign keys and pointers in "Why foreign keys are
not pointers. "12

The philosophy of identification in the FileMan
database system derives from the perception that
individuals should be identified by examining the
minimal set of uniquely identifying properties of
individuals. Such properties are chosen because they
are known not to change easily or often. If the .01
field contains a person's name, in the form of "Last,
First", as would occur in a patient file, then it is
taken for granted that duplicate names may show up
in the field. Identifiers, such as date of birth, would
need to be declared to be consulted in combination
with. the. .01 field. The process of unique
identification of records in FileMan using identifiers
is analogous to that used by people in asking
information from one another and is sometimes
called "intelligent pursuit." This approach to

M COMPUTING 27

identification encourages using names and other
identifying information from the "real world" rather
than identifiers such as assigned numbers convenient
for internal computer operations. The designers of
FileMan obviously hoped users would ask "What is
your name?" rather than "What is your account (or
patient or staff) number?"

Good FileMan database design requires appropriate
use of declarations of fields as mandatory or as
identifiers or both. Fields may be declared
mandatory through interactive dialog when the file
is created or edited, which means that users must
enter a non-null value when prompted (can't use hit
return to enter a null value) as long as no action is
taken to override dialog restrictions. Branch-out and
branch-around operations may be inhibited.
Mandatory fields which are not also identifiers may
contain null values. Fields may be declared
identifiers by using the Utilities File Edit option. An
identifier may be automatically displayed on lookup.
Identifiers enable additional attributes to be
considered in selecting records. Identifiers are used
internally by some FileMan functions (i.e. merge) to
uniquely identify a record.

A field declared as mandatory and as an identifier
(mandatory identifier) may not be deleted and must
receive a non-null value when new records are
added, including through the LAYGO process.
Mandatory identifiers may not contain a null value.
The combination of .01 field together with
mandatory identifiers (where present) may be
considered a kind of composite record key. The .01
field is always · a mandatory (required) field in
FileMan and added fields may be specified as
mandatory. The prompt asks whether the field · is
mandatory, while the List Attributes data dictionary
display uses the term required: hence mandatory and
required are equivalent. Although uses of relational
database technology expect (and receive) support for
composite primary and foreign keys through the
SQL standards and the most widely used SQL
implementations, the use of composite keys has been
questioned, as by Date in "Why noncomposite keys
are a good idea." 13 Kilov and Ross, in discussing
multi-attribute keys, emphasize that the policies of a
particular database technology and its technical
requirements for good database design should not
distract those persons modeling the requirements of
a business or organi:zation from designing an
appropriate information modet. 14

The cross-reference entries and utility provide
enforcement of integrity rules through SET and

28 Al COMPUTING

KILL commands in M which insert or delete records
to maintain the consistent status of cross references.
Cross references between internal record numbers
and the standard name field are maintained
automatically by the system. Other cross references
must be established by a user invoking the cross­
reference utility. Referential integrity in File
Manager systems can also be augmented by custom
M programming.

FileMan provides the following relationships
between files:

Pointer to a File data type

The pointer values in a field defined as a pointer
to a file type constitute a subset of the values
in the IEN field of the pointed-to (referenced)
file and the values obtained by evaluating
pointer values constitute a subset of the
values in the .01 field of the pointed-to
(referenced) file.

If LAY GO is permitted, a new value not in the
pointed-to file is added to the pointed-to file
in attempting to add a pointer for that value
to the pointer field.

Variable Pointer data type

A sequence of evaluation of multiple pointed-to
(referenced) files is declared (as well as
prefixes to aid in data manipulation).

The values obtained in evaluat~g the pointers in
a field defined as a variable pointer type
constitute a subset of the values in the union
of the sets of values in the .01 fields of the
pointed-to files; any pointer value in the
variable pointer field is only meaningful in
the context of the particular file pointer
associated with it, since the pointer values
may have been drawn from the IEN s of more
than one file.

If adding a new value is permitted (LA YGO) for
a given variable pointer file, a new value not
in the pointed-to file is added to the pointed­
to file in attempting to add a pointer for that
value to the pointer field; LAYGO is
accepted (or declined) separately for each file
pointed to.

Subfile

A field is declared as a multiple, with a .01 field
automatically created; additional fields of
subfile records may be defined.

June 1994

-

:J

A subfile record is existence dependent on the
parent record: no subfile record may be
inserted without a parent record and a
deletion of the parent record causes cascade
deletion of dependent subfile records.

Subfiles may be nested to an arbitrary depth; i.e.
subfiles may have subfiles.

When a FileMan user declares a pointer-to-a-file
data type in defining (modifying) a field of a file,
the user is required through dialog to specify an
existing file. FileMan files can be used as lists that
are pointed to by references in one or more other
files so that data is entered only in a single file and
not reentered. Data occurrences can be selected from
what is in the pointed-to file or new entries can be
inserted as needed under the LAYGO facility
described below. The data dictionary for the
pointed-to file has reflects of its pointed-to status.
Referential integrity is maintained under the pointer
option if users always choose to have updates made
to files containing the pointer references when an

4:
entry is deleted from the pointed-to file. The
FileMan system does not permit defining pointers to
files that do not exist. The pointer values in FileMan
fields declared with pointer-to-a-file and variable
pointer data types serve as foreign keys and are
presented as evaluated in displays of file contents
(i.e. the user sees the .01 field value from the
referenced file and values from any fields declared
as identifiers) but are not true value-oriented foreign
key values as in relational databases. This is
consistent with the structure of FileMan where
unique record identifiers are internal values.

FileMan provides extensive automated support for
domains. Users encounter a dialog specific to each
basic data type which permits domain definition
(such as bounds, date/time ranges, string
properties). The rule that foreign key and primary
key (in the form of pointer to a file fields and
corresponding referenced .01 fields) must draw
values from the same domain is enforced by
FileMan for the pointer-to-a-file type.

Assuming FILE 2 has a FIELD A which is a pointer
to a file type which points to FILE 1, then let us say
that FIELD A in FILE 2 is dependent on FILE 1
and that there is a parent/child relationship in which
FILE 1 is the parent (referenced file in relational
terms) and FILE 2 is the child (referencing file).

FileMan's referential integrity rules should provide:

June 1994

Regarding entering new values into FIELD A of
FILE 2 (Dependent, Child): if LA YGO is

not permitted, no FIELD A value may be
entered (either as a new value in a new record
or as an update of a value in an existing
record) which is not already entered as a .01
value in FILE 1; ifLAYGO is permitted then
a new value may be entered into FILE 1 after
which that same value may be entered into
FIELD A of FILE 2.

Regarding deleting values from FILE 1 (parent
or referenced file): no FILE 1 record (i.e.,
.01 value) may be deleted from FILE 1 if
there are dependent records (records with the
same FIELD A values) in FILE 2 without
choosing either (1) to delete the value in any
dependent records in which it exists (delete
record if pointer field is .01 field, otherwise
reset field value to null) or (2) to assign an
existing different value in any different
records in which it exists (set field value to
new allowable value); a user may decline the
null/update restriction at the risk of leaving a
dangling pointer in the pointer field.

These policies assure that the value in FIELD A in
FILE 2 remain a subset of the values in the .01 field
of FILE 1 as long as one of the two options for
dealing with dependent records is accepted by the
user. The presentation of options for handling the
impact of parent record deletion on dependent
records reflects a philosophy that (1) the decision as
to whether to set null or update should be made at
the time of parent record deletion rather than at the
time of defining the file and (2) that selection of any
update value should be made based on understanding
conditions at the time of the parent record deletion
rather than on establishing a default value at the time
the file is created. Here is another example:

Database4

Assume CITY in EMPLOYEE points to US
CITY

Enter/Edit rule for EMPLOYEE: if LAY GO
is not permitted for this field, a CITY must
already be in the US CITY file

If LAY GO is permitted, a new US CITY
may be entered and the same CITY may then
be entered in EMPLOYEE

As mentioned above, FileMan has a provision for a
Learn-As-You-Go (LAYGO) option which can be
selected to assure referential integrity where the

., COMPUTING 29

entire set of object occurrences in the referenced
table is not known initially and it is important not to
inhibit artificially the entry of new records into the
file containing the pointer reference .. Davis terms
such sets "open sets" as opposed to "closed sets"
which cannot receive new data. The user is
permitted to add new object occurrences to the
referenced table as required in order to insert new
objects into the database. 15 The creator of a
FileMan table may allow or prohibit LAYGO. 16

This feature helps deliver the needed flexibility to
keep data consistent but at the same time not restrict
urgent entry of data. LAYGO actions are managed
by dialog with the user. Insertion of a new record
under LAYGO is limited to the following:

the JEN (internal entry number; done by the
system)

the .01 field value
the values for any fields declared as identifiers

LAYGO entry requires that a value be entered for
any mandatory identifier. For non-mandatory
identifiers entry is prompted under LA YGO but can
be overridden by pressing the enter key and entering
a null value.

The following should be noted with regard to
pointer field insert operations (affecting inserts and
updates):

Pointers reference records and a pointer can only
reference a single record of a file; the internal
pointer value is actually the JEN of the
pointed-to record; the visible (evaluated)
pointer value consists of the contents of the
.01 field of the record pointed to.

A pointer to a subfile .01 field is not allowed.
The .01 field of parent table is not subject to a

uniqueness constraint, even if identifiers are
used.

The .01 field of a parent file or subfile cannot
contain null values.

A matching value of the same domain (subject to
the same input restrictions) is assured by a
pointer-to-a-file data type.

Entry dialog uses the FileMan partial match but
the entry selected for insertion must exactly
match a current entry.

The value of the .01 field in a parent file can be
changed (updated) when that field has
dependent records in the same or another file
since only the pointer value (JEN of pointed­
to record) is actually stored in the appropriate
fields of the referencing file and evaluation of

30 Al COMPUTING

the updated value is immediately effective for
users of the referencing (dependent) file with
respect to all dependent records.

More than a single insertion (adding of a new
entry) can be required where pointer chain
relationships are defined involving multiple
files with .01 field pointer data types;
assuming Files 1, 2, and 3 with the .01 field
of File 2 pointing to File 1 and the .01 field
of File 3 pointing to File 2, a user of File 3
adding a value in File 1 but not in Files 2 and
3 will be prompted in sequence to add
records to Files 2 and 3.

The following should be noted with regard to
pointer field delete operations on the referenced
(pointed-to) file of a pointer relationship:

Deletion of a referenced (parent) record affects
all current referencing (dependent) records.

If the pointer field is a .01 field, deletion of a
referenced (parent) record with a current
referencing (dependent) record can cause
deletion of that record rather than
modification of a pointer field value in the
record;

Cascade delete chains can occur in transitive
pointer relationships involving multiple files
with .01 field pointer data types; a deletion
attempt will cause the user to be notified in
dialog, as deletion-handling options are
presented, only about the iD11Pact on the
immediately dependent (adjacent) file.

A relational theory model was presented at one time
for having multiple target files as is the case for the
FileMan variable pointer data type. 17 The relational
concept of a multiple target foreign key declaration
required that all target keys be from the same
domain although the dialog enforces specifying
which file is affected in using the LAYGO option
with a variable pointer. In FileMan a single domain
is not required in the variable pointer relationship.
Another related referential integrity variant was
presented by Rennhackkamp as the "fan-out"
referential integrity constraint where "a single
foreign key in a table can refer to the key of one of
many tables" and "typically" involving a
discriminating condition. 18 •

The FileMan database system pointer option
supports queries that involve more than one table.
Extended pointers are used in queries, report
generation, and in defining derived fields. Three
categories of extended pointers are available under

June 1994

-

: 1994

the computed fiekl option when files are being
created: simple, join, and backwards. Pointer
relationships implicit in computed fields through use
of extended pointers are supported through
referential integrity provisions. Since File Manager
multiple-valued fields and multi-line word­
processing files may be referenced by extended
pointers, sets of values may be returned on use of a
single query. 19 The provision for backward
extended pointer references to files and fields
includes a check of whether a corresponding cross
reference (on the pointed-to or referenced field) has
been established. The join extended pointer does not
require a pointer (data type) relationship between
files.

Summary or Conclusion

Although the FileMan referential actions do not
conform directly to those of the SQL standard,
FileMan possesses a sophisticated system of support
for referential integrity. These referential actions are
carried out automatically by the system, involving
dialog with the user, to maintain referential
integrity:

June 1994

Insert rule with LAYGO not allowed which
prevents insertion of values into pointer
fields of referencing files which do not
currently exist in the .01 fields of
corresponding referenced files (for pointer
and variable pointer data types)

Insert rule with LAYGO allowed which permits
a user of a referencing file editing a field
with pointer or variable pointer data type to
insert new values into .01 fields of

·· corresponding referenced files prior to
insertion into the field of the referencing file;
automated LAYGO insertion is limited to
entry of a new record, including only the
IEN and .01 field values and any additional
identifier (can be overridden) and mandatory
identifier fields (a value must be entered)

Implicit insert rule for subfiles requiring a parent
record

Delete rule for referenced file (parent) records
which permits a user to set referencing
(dependent) file record pointer values to null
or to another currently existing value in the
corresponding referenced file prior to
deletion of a record in the referenced file
having dependent records in the referencing
file (subject to override through declining)

Delete rule for referenced file (parent) records
that rejects attempted deletion for files that
are referenced through pointer or variable
pointer relationships

Implicit cascade delete rule for subfiles

Additional relevant properties of the system can be
characteriz.ed as follows:

Uniqueness of records for the system is provided
by the IEN record identifier

Records are identified as unique by users
through inspection of the .01 field, in some
cases together with declared identifier fields
as a form of composite key; uniqueness for
fields other than the IEN can be implemented
only through custom programming

A not-null constraint can be implemented by use
of mandatory identifiers (if programmer
override options are not used)

The pointer-to-a-file data type assures that only
values currently existing (before the
attempted insert edit if LAY GO is not
allowed and immediately after a successful
LAY GO action if LAY GO is allowed) in the
pointed-to file .01 field can be inserted and
thus provides that all values in the pointer
and pointed-to fields are drawn from the
same domain (subject to the same input
transform)

In use of the variable pointer (multiple target)
data type, an inserted value must be drawn
from the domain of the .01 field of a single
pointed-to (referenced) file

Comparison with the referential integrity provisions
of the SQL standards and SQL implementations may
assist in FileMan database design and use and also
in planning for FileMan development.

Acknowledgements

The research for this paper was supported in part by
a contract from the U. S. Department of Veterans
Affairs Information Systems Center, San Francisco,
California. Appreciation is expressed for assistance
from Tami Winn, Maureen Hoye, Greg Shorr,
Richard Davis, and others.

Notes

1 Tami K. Winn and Maureen L. Hoye,
"Relational Features of VA FileMan," MUG
Quarterly 21, 3 (1991): 46-51. See also
Catherine Pfeil and Maureen Hoye, "Today's

M COMPUTING 31

2

3

4

5

6

7

8

9

FileMan," M Computing 1, 1 (February 1993):
44-45.

Kyle A. Lindner, David J. Whitten, Linda S.
Elling, and Gerald P. Bodey, "Ntelligence: A
FileMan-Based Expert System," MUG
Quarterly 20, 1 (1990): 64.

VA FileMan User's Manual, Version 19.0 (San
Francisco, CA: Information Systems Center,
Department of Veterans Affairs, 1992).

C. J. Date with contribution by Andrew
Warden, Relational Database Writings 1985-
1989 (Reading, MA: Addison-Wesley, 1990),
p. 23.

T.-W. Ling, and C. H. Goh, "Logical
Database Design with Inclusion
Dependencies," Proceedings of the Eighth
International Conference on Data Engineering,
Tempe, Arizona (February 1992): 642-649.

Bruce M. Horowitz, "A Run-Time Execution
Model for Referential Integrity Maintenance,"
Proceedings of the Eighth International
Conference on Data Engineering, Tempe,
Arizona (February 1992): 548-556.

Victor M. Markowitz, "Safe Referential
Integrity Structures in Relational Databases,"
Proceedings of the 17th International
Conference on Very Large Data Bases,
Barcelona, Spain (September 1991): 123-132.

Richard G. Davis, FileMan: A Database
Manager User Manual (Washington, DC:
National Association of VA Physicians and
Computec, 1987), p. 1-6.

C. J. Date, An Introduction to Database
Systems, 1:758, 777, 797.

10 Victor M. Markowitz, "Referential Integrity
Revisited: An Object-Oriented Perspective,"
Proceedings of the 16th International
Conference on Very Large Data Bases,
Brisbane, Australia (1990): 578-589.

11

12

Marianne Follingstad, "Controlling Data Entry
in FileMan-Based System Development or
Expansion," MUG Quarterly 20, 1 (1990): 7-
13; and "Controlling Data Integrity in
FileMan-Based System Development," MUG
Quarterly 21, 3 (June 1991): 101-105.

C. J. Date with Andrew Warden, Relational
Database Writings 1985-1989, pp. 140-141.

32 Al COMPUTING

13 C. J. Date with Andrew Warden, Relational
Database Writings 1985-1989, pp. 159-163.

14 Haim Kilov and James Ross, Information
Modeling: An Object-Oriented Approach
(Englewood Cliffs, NJ: Prentice Hall, 1994),
pp. 209-212.

15

16

17

Richard G. Davis, vol. 1, p. 9-22.

Richard G. Davis, vol. 1, pp. 3.8-3.9.

C. J. Date with Andrew Warden, Relational
Database Writings 1985-1989, pp. 163-165;
see also Codd, E. F., "More Commentary on
Missing Information in Relational Databases
(Applicable and Inapplicable Information),"
SIGMOD Record 16, 1 (March 1987): 42-50.

18 Martin Rennhackkamp; "Unconventional
Referential Constraints," DBMS 6, 9 (August
1993): 55-58, 60-61.

19 Richard G. Davis, FileMan: A Database
Manager User Manual, Vol. 2 (1990), pp. 53-
85; see also Beza, Fil Y., Jr., Intermediate VA
FileManager (Martinez, CA: VA Medical
Center, 1991).

HHHCI.
Our MEdit™ full-screen routine editor and customizable
MShell™ toolkit will cut your development time, and make
multi-platform development a snap!
We also offer expert consulting services for system
management, custom software, health care, and much more!

Cal I 1-800-370-1935

•

McIntyre Consulting, Inc.
336 Baker Ave., Concord, MA 01742
(508) 371-1935 Fax: (508) 369-6693

Email: rnsm@mcinc.com

/JISh~
June 19

