
M'S NEW
INTERFACE

The M Windowing API: The Tools

by Gardner S. Trask III

This is the second article of a three-part series on the M
windowing application program interface (MW API).
The first article, published in the February 1994 issue

of M Computing, introduced the realities of how the move to
windows will affect M's programming methodology, style,
and code. This second article introduces M professionals to
the tools or palette of the MW API. The third article will cre
ate an application.

A Rose by Any Other Name
As with many as]ects of the computer world, there is little
universal agreement on terms and definitions in the interface
area. Different schools of technology describe the same ob
ject in many ways, users twist the terms for comfort or hu
mor, and vendors each try to individualize and self-promote
by adding custom names to an object or process. Where does
this leave a new user? The new user is left to learn by assimila
tion, a gteatly hampered process.

Intentionally, the MW API was designed to conform to no
one window interface, platform, or architecture. By encom
passing all windows platforms, MW API authors have de
fined terminology that, while using generally accepted terms,
are platform-independent. That which the X-Motifuser calls
a gadget and that which an MS-Windows user calls a gadget
is of no concern. That which MW API calls a gadget is impor
tant here.

Some Assembly Required
Putting together the MW API components is an exciting pros
pect. It is not unlike getting a model-building kit as a kid.
Did you really want to first separate and inspect each labeled
airplane part to ensure all pieces were enclosed? You proba-,
bly wanted to jump right in and begin glueing the pieces to
gether, skipping over the inspection step. In order to start
building the MW API, however, I will first label all the pieces
in the package. (Keeping an inventory is also a good idea.)
Building the MW API application will be the subject of the
third article, as noted in the introductory paragraph.

Of necessity, this article foregoes a complete discussion of
each definition. An excellent reference for in-depth technical

April 1994

information about the MW API is the MUMPS Development
Committee (MDC) document Xl 1/SC11/TG4/WG6.

Windows, Elements, and Events
The graphical user interface (GUI) of MW API consists of
one or more screens (windows) on which various elements
(gadgets; menus, timers) are manipulated by various events.
These windows are placed on display, and the events are
monitored by an event driver. ·

The MW API runs as M code within a vendor's system (such
as Micronetics or InterSystems' DataTree) while running on
top of a windows platform (this may be MS-Windows, X
Motif, etc.), This would be known as MSM or DTM running
on MS-Windows or X-Motif. The actual windows platform
is irrelevant to the MW API.

Each M process has a /\$DISPLAY allowing a place to create
one or more A$WINDOWs with one or more elements. Elements
are gadgets, menus, and timers. Gadgets are objects for en
tering, modifying, and or displaying data or graphic repre
sentations. Menus allow the selection of processes. Timers
generate events in a timed manner. There are mechanisms to
control events at the job level, window level, and each ele
ment level.

A$DISPLAY

I
A$WINDOW 1

I
gadgets
menus
timers

A$WINDOW n

A$EVENT - Process event-handling

(window event-handling)
(gadget event-handling)

(menu event-handling)
(timer event-handling)

Figure 1. A representation of an ssvn hierarchy wherein
/\$DISPLAY can have one or more /\$WINDOWS. /\$WINDOW can

have some number of gadgets, menus, and/or timers. It also il
lustrates the many levels of optional event-handling.

This window and element creation and manipulation is ac
complished through the use of a powerful language feature,

M COMPUTING 47

unique to M Technology, called structured system variables
(ssvns). ssvns are variables (with a global array-like design)
that have a predetermined structure, and in some cases,
value. This provides a vendor-independent mechanism for
retrieving information or manipulating the system. Com
monly, ssvns store in a now standard location that which was ·
previously vendor-specific information. For example, the
proposed standard calls for ssvn A$LOCK to return LOCK table
information regardless of vendor, thus eliminating many z
functions and even MGR tools.

In the context of windows, the MW API ssvns are unique for
each job or process. This means the user may set attributes
to the main window and not interfere with a coworker's main
window. The MW API ssvns also have the ability to be SET
and KILLed, thus allowing an application to manipulate them
"on the fly."

The three ssvns associated with the MW API are A$DISPLAY,
A$EVENT, and A$WINDOW. A description of each follows.

/\$DISPLAY
The A$DISPLAY (A$DI) ssvn gives the MW API a logical sur
face for displaying input and output via windows. Normally
one would consider the monitor as an A$DISPLAY, but A$DI
can span more than one physical device (such as a bank of
monitors or remote site screens), or can exist as a portion of
a physical device (such as a multiprocess workstation moni
tor). Each M process maintains its own $DISPLAY (or possibly
multiple A$Dis) and is not shared by other processes. The
system variable, $PDISPLAY, specifies the principal display
device. Depending on the underlying windows platform, the
physical device, and the vendor's implementation, a user can
control many characteristics of the A$DISPLAY. (See figure
2.)

A$EVENT
The A$EVENT ssvn (A$E) will set and retrieve infortnation
about events, and is accessible to a process during callbacks
for the event.

Used in conjunction with A$WINDOW, the A$E ssvn contains
information about the most recent event that occurred. This
could include the last keys pressed or the next window that
gets focus. The A$E ssvn can be used to control the flow of
processing. A$E controls the events for the current process.
Other mechanisms control events for the windows and each
element (gadgets, timers, and menus).

A$E may contain some or all of the characteristics in figure 3.

48 M COMPUTING

A$DISPLAY(displayname,

"BCOLOR")
"CLIPBOARD")

"COLOR")
"COLORTYPE")

"FCOLOR")
"FOCUS")

"KEYBOARD")
"PEN")

"PLATFORM")

"PTR")

"SIZE")

"SPECTRUM")

"TYPEFACE")

"UNITS")

Default background color
Contents of the platform's
clipboard
Window application area color
Grey scale, mono, or color
capabilities
Gadget default foreground color
Window (and perhaps gadget)
with focus (O: no; 1: yes)
Does display have a keyboard?
Does the display have a pen I/0
device?
Name and version number of the
platform
Does the display have a
pointer, e.g., a. mouse?
Horizontal, vertical s·ize of
display in units?
Number of color or grey scales
available
Specifies the fonts, faces, and
point sizes available
Units used_in sizing, e.g.,
char, pixel, etc.

Figure 2. A$DI characteristics.

A$EVENT(
"CHOICE")

"CLASS".)

"ELEMENT")

"KEY")

"NEXTFOCUS")

"OK"-)

"PBUTTON")

"PPOS")
"PRIORFOCUS")

"PSTATE")

"SEQUENCE")

"TYPE")

"WINDOW")

The 'choice' of a SELECT event,
e.g., which radio button
Specifies the event class to
which the event belongs
Specifies the element to which
the event belongs
Identifies the key or keys
pressed for keyboard event
Focus on unfocus or change event
object that wili next gain focus
Specifies if the event should be
compiled normally
Identifies button ~ssociated
with pointer event
Pointer position
Past unfocus or change event
object that had focus
Pointer buttons (other than
PBUTTON) during a pointer event
Unique sequence number of event
within process
Identifies the type of event,
e.g., pointer, select
The name of the window for which
the event occurred

Figure 3. A$EVENT characteristics.

April 1994

t)WINDOW
The heart of the MW API is A$WINDOW (A$W). A$W is the ssvn
that allows users to create, modify, and delete windows. It
is a place to create, modify, and delete the gadgets, timers,
and menus accessible to a particular process. There are multi
ple levels to the A$WINDOW ssvn. There is a level to control

This inheritance property holds for almost all the display,
event, window, gadget, menu, and timer attributes. For ex
ample, to create a simple window with a title of "Hello
World!" (see figure 5), all the programmer needs to do is SET

AWINDOW(1, "TITLE") ="Hello World!".

A$WINDOW(windowname,
"ACTIVE") Indicates if window, elements, and descendants are active
"BCOLOR") Default background color for subsequently created gadgets
"COLOR") Color of application area
"DEFBUTTON") Specifies default push button for a window
"DISPLAY") Specifies the display where window appears
"FCOLOR") Default foreground color for subsequently created gadgets of this window
"FFACE") Default typeface for subsequently created gadgets of this window
"FSIZE") Default font size for subsequently created gadgets of this window
"FSTYLE") Default font style for subsequently created gadgets of this window
"ICON") Specifies icon to use if iconified
"ICONIFY") Switch to allow window to be iconified

Internal identification number of window
Icon title
rtl.entifies the menu to be displayed at the window level
Identifies if this window currently exists as an icon

"ID")
"!TITLE")
"MENUBAR")
"MIN")
"MODAL") Specifies modal window and type of modality. Modal disables various other windows, depending

on type
"NEXTG")
"PARENT")
"POS")
"RESIZE")
"SCROLL")
"SIZE")
"SIZEMIN")
"SIZEWIN")
"TIED")
"TITLE")
"TYPE")
"UNITS")
"VISIBLE")

Defines action when window, but no gadget, gets focus
Defines the window's parent. Used to inh'erit attributes
Defines original position of window frame, in units
Indicates if the user can resize the window
Indicates a horizontal or vertical scroll bar is present
Specifies the window viewport height and width, in units
Specifies the minimum size allowed to resize the window
Specifies the window frame height and width, in units
Indicates if window position is relative to parent window
Specifies the window title text
Specifies window type
Specifies measurement units, e.g., pixels, characters
I.ndicates if a window is visible to users

Figure 4. Window attributes.

attributes of the window itself, for window events, for gad
gets, for menus, and for timers. At the base level, each win
dow has certain attributes, such as those shown in figure 4.

Note that while there appear to be many attributes at each
level, the power of inheritance allows default values of the
underlying windows platforms, and any parent windows, to
predefine most of these attributes. The user thus can create
complex windows by modifying a relatively small subset of
attributes. For example, the default background color
(BCOLOR) for a gadget's window is passed by the windowing
platform, and the default font size (FSIZE) is 12. Unless the
developer has a specific reason to change these defaults,
they are automatic and need not be set explicitly, ever.

Figure 5. A simple window requires only a simple command.

April 1994 M COMPUTING 49

The inheritance property will generate automatically the
global structure as shown in figure 6.

A$WINDOW(l,"DISPLAY")="l"
A$WINDOW(l,"FCOLOR")="0,0,0"
A$WINDOW(l,"FFACE")="System"
A$WINDOW(l,"FSIZE")="l0"
/\$WINDOW (1, "FSTYLE''.) ="BOLD"
A$WiNDOW(l, 11 ICON 11 \"= 11

" .,

A$WINDOW(l,"ICONIFY")="l"
A$WINDOW(l,"ID")="5070"
A$WINDOW(l,"ITITLE")="Hello World!"
A$WINDOW(l,"MIN")="0"
A$WINDOW(l,l'POS")="66,66,PIXEL"
A$WINDOW(l,"RESIZE")="l"
A$WINDOW(l,"SCROLL")="0"
A$WINDOW(l,"SIZE")="236,42,PIXEL"
A$WINDOW(l,"SIZEMIN")=""
A$WINDOW(l,"SIZEWIN")="244,69,PIXEL"
A$WINDOW(l,"TIED")="0"
A$WINDOW(l,"TITLE")="Hello World!"
A$WINDOW(l,"TYPE")="APPLICATION"
A$WINDOW(l,"UNITS")="PIXEL"
A$WINDOW(l,"VISIBLE")="l"

Figure 6. Example of one M command generating a global
structure.

Window Events
As with the process event /\$E, each window can respond to
events in various ways. Default event-handling can be passed
to the window, but as always, the programmer can modify
these. The A$W events are shown in figure 7.

And Now, the Rest of the Story
Figure 8 displays most of the gadgets available through the
MW API as well as a menu bar. (Timers are not visible ob
jects, so there is no way to represent them visually.)

But first, the Timer, which has no visual representation. A
Timer generates a specified event after a specified time inter
val. Usually used for time-out events, the timer structure is
very simple:

A$W(windowname,"T",timername,
"INTERVAL") Number of seconds for event to

take place
"ACTIVE") 0 - timer inactive, 1 - timer

active
"EVENT" , "TIMER") Routine to call if timer expires.

Follow along with the figure, which shows each of these fea
tures.

50 Al COMPUTING

A$WINDOW(windowname,"EVENT",

"CLICK")

"CLOSE")
"DBLCLICK")

/'FKEYDOWN")
"FKEYUP")
"FOCUS")
"HELP")
"KEYDOWN")
"KEYUP")
"MAX")

"MIN")
"MOVE")
"PDOWN")
"PDRAG")
"PMOVE")
"PUP")
"RESIZE")

"UNFOCUS")

Process to invoke when
there is a single cli~k of
pointer device
Request to "destroy" window
There is a doubleclick of
pointer device
Function key is pressed
Function key is released
Window receives focus
Call for help
Key is pressed
Key is released
Window is expanded to maximum
size
Window is minimized
Window is moved
A pointer down evept occurs
A pointer drag event occurs
A pointer move event occurs
A pointer up event occurs
A resize event for the window
occurs
A window loses focus

Figure 7. Window events that a programmer can modify.

Radio ButtonS

® Option1

0 Option2
0 Option3

Label:

"$WINDOW

DOCUMENT

The quick brown
fox iumped over
tho lazy doi,

TEXT I Typing test. I
1a1,,,;:1 nmm11cu
Hori2ontal Scroll Bar

;

Vert~al
Scroll
Bar

Symbol

°' "j Generic Box

Option1

Option1
Option2
Option3
Oplion4
Option 5

D
D Long

List
Box

List
Entry
Bo,

Figure 8. The MW API demonstration window.

Menus, such as that in the figure, allow users to select from a
list of choices. Menus appear as menu bars, which are shown
(horizontally) directly below the window's title bar, or as
drop..:down menus (or pop-up) that display options vertically
below the menu bar when that is displayed at the top. Drop
down menus can invoke other drop-downs. ,The structure of
a menu would include such attributes as ACTIVE, ID, POS,

April 1994

and substructures to identify each CHOICE and associated
events. Refer to user manuals and/or MDC documents for
further detail.

Now for the most exciting, most visible, element: the gadget.
Gadgets allow interaction within windows to create, retrieve,
and modify data or invoke processes. Obviously, gadgets in
figure 8 provide a more intuitive and visually eye-pleasing
mechanism for data manipulation than the old roll-and-scroll
format, or even than formatted screens on character-node dis
plays. The defined MW API gadgets appear in the figure, and
are as follows:

Check Box
Allows the user to tum an indicator on or off.

Document
Enables the user to view, enter, and modify one or more lines of text.

Generic Box
Allows the user an area in which to present, enter, or modify text, geometric
figures, and other graphical figures.

Group Frame
A rectangular out!~ used to visually group gadgets together on a window.
Example: a frame encompassing several check boxes similar in nature.

Label
Static text that appears within a window.

List Box
Displays a list of items and allows the user to select one or more. Should the
list exceed the box size, a scroll bar can enable the user to move through the
text.

List Button
Displays a text line and a push button. The text line is filled with the default
or selected choice. When users push the button they receive the (normally
invisible) list of available items. When the user selects one item, the list box
disappears, leaving the selection in the text box. The choices cannot be edited
by the user.

List Entry Box
Similar to the list button, the list entry box gives the user a text line and
a push button. It also displays a defined number of options in a list box
automatically. The user navigates lists exceeding the list box size via scroll
bars. When the user selects one item, the text-entry line is filled with selec
tions. The user also could enter new items on the text-entry line.

Long List Box
Similar to a list box, the long list box helps the user manipulate long lists of
items. The long list box has special events to allow the application to control
scrolling, navigation, and display of list items. Multiple items can be se
lected.

Push Button
A rectangular button with associated text, that when "pushed," generates an
event.

Radio Button Set
A collection of related items that a user can select. At any time, only one
item can be selected. Selecting an item "unselects" any previously selected
item.

Scroll Bar
A scroll bar is a visual representation of values on a numeric scale. These
can be horizontal or vertical. The user can change the value by moving the
position indicator.

Symbol
A symbol is an image to display within a window. Symbols are for viewing
purposes only and cannot get focus or be modified.

Text
A text box that allows the user to view, enter, and modify a single line of
text. If the text line cannot fit within the box, a horizontal scroll bar will aid
in navigation.

April 1994

Gadget Attributes
The following attributes are similar in scope to those for the
window:

A$W(windowname,"G",gadgetname,

ACTIVE, BCOLOR, FCOLOR, FFACE, FSIZE,
FSTYLE, ID, NEXTG, POS, SCROLL, SIZE,
TITLE, TYPE, UNITS, VISIBLE

The attributes listed in figure 9 are also associated with
gadgets.

"CANCEL")

"CANCHANGE")

"CHANGED")

"CHARMAX")
"CHOICE")

"DRAW")

"DRAWTYPE")
"EVENT")

"FRAMED")

"INSELECT")
"NEXTG")

"RESOURCE")
"ROWCOL")

"SCROLLBY")

"SCROLLDIR")

"SCROLLPOS")

Do not perform focus, change,
or unfocus events
Users are allowed to change
values
Flag is set if the gadget value
changes
Maximum characters of text
Choices for radio buttons, list
boxes, etc.
Defines the draw commands that
are descendants
Defines type of draw commands
Dependent events that can
happen to gadget
Does frame appear around
gadget?
Insertion point of new text
Defines next gadget to get
focus
Specifies an image to display
Specifies how choices are
displayed on a RADIO gadget
Scroll increment when user
presses movement button
-Horizontal or vertical scroll
bar
Position of indicator in long
list box

"SCROLLRANGE") Value range of scroll bar
"SELECTMAX") Maximum concurrent selection

allowed
"SELECTVAL")
"TBCOLOR")
"TFCOLOR")
"TFFACE")
"TFSIZE")
"TFSTYLE")
"TOPSHOW")

"TPOS")

Contains the selected data
Title background color
Title foreground color
Title font face
Title font size
Title font style
List value in top line of
gadget
Title position

Figure 9. Gadget attributes.

The following is a list of event types that gadgets can act on.
They exist in the structure:

A$W(windowname,"G",gadgetname,"EVENT",eventtype

• COMPUTING 51

These are similar to events for windows:

CLICK, DBLCLICK, FKEYDOWN, FKEYUP,
FOCUS, HELP, KEYDOWN, KEYUP, PDOWN,
PDRAG, PMOVE, PUP, UNFOCUS

The event types shown in figure 10 are unique to gadgets.

"CHANGE") Event to complete if gadgets
"CHANGED" attribute is set

"GOBOTTOM") Go to bottom movement control
is selected

"GODOWN") Go down movement control is
selected

"GODOWNBIG") Go down big movement control is
selected

"GOTOP") Go to top movement control is
selected

"GOUP") Go up movement control is
selected

"GOUPBIG") Go up big movement control is
selected

"SELECT") Event if user selects or
deselects a gadget or choice

Figure 10. Gadget event types.

Conclusion
Such are the building blocks of the MW APL In this article,
I have given you all the "model airplane set" pieces and ex
plained them. The next article will demonstrate how to put
them together.

It will discuss not only the creation of an application, but also
how to manipulate these ssvns, how Merge and Set differ, the
side effects of MERGE, inheritance, focus, unfocus, modal
windows, estart/estop, and much, much more. M

Endnotes
1. G. Gardner, "Peeking at the New M Windowing API," M Comput
ing 1:2 (April 1993).
2. Microsoft Programming Series, The Windows Interface: An Appli
cation Design Guide (Penguin Books, 1992).
3. MDC Subcommittee 11, M Windowing API, Xll/SCllffG4/
WG6/93--,-17, 29-JUNE-1993.
4. Micronetics, MSM-GUI Reference Manual (1993) .
. 5. Digital Equipment Corporation, Windowing Application Program
ming Interface Guide for DSM (December 1993).

52 M COMPUTING

The following table shows which attributes are available for
which gadgets:

A - Check Box
D - Group Frame
G - List Button
J - Push Button
M - Symbol

A B

ACTIVE ✓ ✓

BCOLOR ✓ ✓

CANCEL ✓ ✓

CANCHANGE ✓

CHANGED ✓ ✓

CHARMAX ✓

CHOICE

DRAW

DRAWTYPE

EVENT ✓ ✓

FCOLOR ✓ ✓

FFACE ✓

FRAMED ✓

FSIZE ✓

FSTYLE ✓

ID ✓ ✓

INSELECT ✓

INTERVAL

NEXTG ✓ ✓

POS ✓ ✓

RESOURCE

ROWCOL

SCROLL ✓

SCROLLBY

SCROLLDIR

SCROLLPOS

SCROLLRNGE

SELECTMAX

SELECTVAL ✓

SIZE ✓ ✓

TBCOLOR ✓

TFCOLOR ✓

TFFACE ✓ ✓

TFSIZE ✓ ✓

TFSTYLE ✓ ✓

TITLE ✓ ✓

TOPSHOW

TPOS ✓

TYPE ✓ ✓

UNITS ✓ ✓

VALUE ✓ ✓

VISIBLE ✓ ✓

C

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

B - Document
E - Label
H - List Entry Box
K - Radio Button
N - Text Box

C - Generic Box
F - List Box
I - Long List Box
L - Scroll

Elements and Their Attributes

D E F G H I J K L

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓

✓

✓

✓

►
✓ ✓

✓ ✓

✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M N

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓ ✓

✓ ✓

✓

✓ ✓

Gardner S. Trask ill is a senior programmer/analyst for Collaborative
Medical Systems in Waltham, Massachusetts, and owner of MPower
Computer Consultants in Beverly, Massachusetts. He is the ex-officio
chairperson of the New England M Users' Group. As the system
operator of the NEMUG Bulletin Board System, he can be reached
via the NEMUQ BBS [Phone: (508) 921-6681 (8-N-1)] or at trask@
world.std.com (via Internet). This article may or may not reflect the
views of Mr. Trask's employers.

April 1994

