
FOCUS ON
FILEMAN

Progratntning Hooks 102: Rules for Use

Introduction
This is the second in a series of articles
that examines programming hooks
available in VAFileMan. A program­
ming hook is a significant point in the
sequence of events that makes up a
standard database activity at which a
programmer can insert M code. To
use VA FileMan programming hooks
effectively, developers must abide by
some simple rules. Some rules always
have existed but either have not been
effectively communicated to devel­
opers, or have been missed by devel­
opers in the flight to experience.
Other rules arise only now from
changes in M Technology and the
changes that must follow in FileMan
as a result. Programmers who do not
learn and apply these rules will doom
their databases to stagnation or obso­
lescence. This time, Focus on File­
Man spotlights these all-important
rules for using programming hooks.

Unsupported Hooks
Rule: Programmers must not use un­
supported hooks. While this may
seem to be a simple proposition, it is
not. Although novice programmers
can adhere easily to this rule by stick­
ing to the hooks described in the File­
Man manuals, more experienced pro­
grammers have two challenges facing
them.

First, experienced FileMan program­
mers may have unsupported hooks in
their databases without realizing it.
FileMan's early developers (George
Timson and the late Michael Distaso)
had the freedom to release new ver-

50 Ill COMPUTING

by Rick Marshall

sions with little overhead, and fre­
quently released versions of FileMan
with hooks and other features added
for specific programmers. They eas­
ily could remember all of the agree­
ments they made regarding which
hooks were supported for use by pro­
grammers who were not part of the
FileMan team, and which were for
FileMan's internal use only.

The advantages were great for cus­
tom-fit features, but several factors
have complicated this practice. The
number of FileMan programmers and
hooks, and the size of FileMan have
all become too cumbersome for hu­
man memory to track.

Now FileMan development involves
a team of several developers, making
written documentation essential even
within the team, let alone for the out­
side world. We undertook a survey of
undocumented features developers
use and documented what we found.
Thus, as far as we could, we solved
this problem by legitimizing existing
practice (a strategy known as grand­
fathering).

A problem facing experienced pro­
grammers comes from their key ad­
vantage over novices, which is their
programming habits. Good program­
mers develop personal styles, con­
sisting of standard ways to solve stan­
dard problems. Unique styles enable
them to program rapidly, without
struggling over every aspect of the
problem at hand, and thereby letting
them focus only on what's new about
the problem. Styles retain the history
and experience of their users, and ex­
perienced FileMan developers may

retain among their programming hab­
its the reflexive use of features they do
not realize lack documentation.

With the relatively new reliance on
written documentation to determine
which features are supported or not,
experienced programmers may be
building their software houses on
foundations that unintentionally will
be pulled out from under them.

There is an easy solution. Reread the
FileMan documentation, and then re­
read your software. The documenta­
tion will have changed considerably
since you learned to use FileMan, and
you will find features and hooks of
value that were not documented (or
did not exist) when you started out.
Rereading your software -particu­
larly looking at data dictionaries, tem­
plates, and routines-will help iden­
tify features to use that are not
documented. If you find any, contact
us by e-mail or at the address follow­
ing this column, and we will help you
by either grandfathering in your fea­
ture or by phasing you into something
newer.

Unsupported Variables
Rule: Don't use unsupported vari­
ables within a programming hook.
First, don't assume that variables sup­
ported for one hook are supported for
any other hook; they must be treated
on a case-by-case basis. Second,
don't assume that any variable de­
fined at a given hook is available for
use by that hook. I know it is common
practice for novice programmers to is­
sue ZWRITE commands within an M
cross-reference to learn "what's

February 1994

available," and then to pick out vari­
ables for the cross-reference's code to
use from that list. This is a setup for
disaster and M programmers should
know better than to get into one.

IfM means never having to say you 're
sorting, it also means not doing every­
thing you can. We believe that the M
approach of opening the world to you
makes you a better programmer be­
cause you avoid problems by choice.
Here's a place to apply that discre­
tion. No matter how useful a variable
in the symbol table looks, if it is not
documented as supported for use, it
may disappear from the symbol table
when the VA releases a newer version
of FileMan. More insidiously, a use­
ful variable may cm.ly exist under the
right conditions. Stick to the sup­
ported variables, and if what you need
is not available, contact the FileMan
team to get a reliable, supported way
to achieve what you want.

As with unsupported hooks, experi­
enced programmers need to refamil­
iarize themselves with the documen­
tation and their own code, and
identify those unsupported variables
used in their own applications.

Symbol Table Cleanup
Rule: Clean up after yourself. (Re­
member what you learned in kinder­
garten.) The MUMPS Development
Committee has given you the NEW
command, so use it to NEW your vari­
ables. The only variables that should
have changed when your hook com­
pletes execution are those docu­
mented for output from the hook to
FileMan and your own package-wide
variables.

Reentrance and
Compatibility
Rule: Don't assume everything is re­
entrant and compatible. If within a

February 1994

programming hook you make a call to
FileMan, you are nesting FileMan
calls. This will work only if the calls
in question are reentrant (in the case
of nesting a call within itself) or com­
patible (in the case of different calls
being nested).

In fact, no code is reentrant or com­
patible unless you code it to be that
way. The documentation is your only
guide here. Remember, too, that re­
entrant calls may nest your program­
ming hook. Is your programming
hook reentrant? You should probably
document the reentrance of your own
package as well. For example, if your
hook is an input transform, then File­
Man's standard lookup program,
DIC, will call it. If your input trans­
form contains another DIC call, then
it, too, may call your input transform.
Unless you write your input transform
properly, you will step on your own
variables.

Flow of Control
For M, as with most programming
languages, the default flow of control
is strictly sequential, executing com­
mands left to right, top to bottom, in
order. Certain M commands perma­
nently alter that flow in the current
line or routine: BREAK, ELSE, FOR,
GOTO, HALT, IF, and QUIT. For ex­
ample, given the following line, M
will execute every command:

S DIC-19,DIC(O)="M",X="ZZ TEST
OPTION",Y=O D ADIC S ZZTOAD_Y

but if we replace the oo with a GOTO
then ZZTOAD will never be set, and re­
placing o ADIC with a FOR command
will cause an infinite loop.

In FileMan programming hooks, use
these commands with caution. Some
programming hooks expect you to al­
ter the flow of control. For example,
DIC("S") expects you to set $TEST,

· which usually requires an IF com-

mand (see VA FileMan Version 20.0
Programmer Manual, page42). Oth­
ers, though, expect no alteration of
the flow of control. FileMan appends
more commands to the end of some
progrmming hooks, so if you alter the
flow of control FileMan may never
execute these appended commands,
or may repeat them unexpectedly. For
example, if you include an IF com­
mand in a field's output transform,
and then attempt to print a report in
which you sort by that field, under the
right conditions your report will in­
clude entries you do not want (see VA
FileMan Version 20.0 Programmer
Manual, pages 170 to 171).

Read the documentation carefully. If
it disallows use of certain commands,
avoid them. If it explicitly permits the
use of certain commands, feel free to
so so. If it does not discuss whether
you may use a certain flow control
command, assume you cannot.

Rule: If you must use a flow control
command in a restricted program­
ming hook, bury it in the execution
stack so it does not alter the hook's
flow of control. You can do this by
wrapping the command up in an XEC­
UTE statement. For example, turn

F ZZA=l:1:1O S ZZB(ZZA)=ZZA

into

X "F ZZA=l:1:1O S ZZB(ZZA)=ZZA"

Alternately, you can do this by put­
ting the risky code in a routing, and
using the DO command to call it. By
replacing the restricted flow control
commands with a DO or XECUTE, you
will avoid changing the new hook's
flow. Eventually, FileMan develop­
ers hope to restructure FileMan to per­
mit developers to use these flow con­
trol commands more freely, but for
now you should take precautions.

M COMPUTING 51

Segregating
Input/Output
One of the greatest challenges is the
move to a graphical user interface
(GUI). No longer will you control the
order of events. Instead, your users
will choose which gadgets to invoke
and in which order. In such an envi­
ronment, you do not have READ/WRITE
control. Instead, the window driver
will perform all the input/output with
the user. This has serious implications
for most M programmers used to mix­
ing freely input/output with database
activities and computations. For
GUI, this must stop.

Rule: You must segregate your input/
output from your other activities in
preparation for GUI and the sooner
you start, the easier the transition will
go when the M windowing applica­
tion program interface arrives. (See
p. 45 for an article on MWAPI.) In
particular, it is time to review all your
FileMan programming hooks to
locate READS and WRITES, or Dos or
GOTOs in order to code them as READS
and WRITES. Our surveys of the
Decentralized Hospital Computer
Program (DHCP) have confirmed
that some input and output transforms
issue WRITES, but we have found no
output transforms with READ com­
mands. Compile a list of places where
input/output is embedded within a
programming hook. We will provide
you a tool to issue WRITES or to pass
them off to the windowing environ­
ment, depending on the current input/
output handling with the user. We
recognize this creates work for all of
us, but the move to GUI will gain M
greater acceptance with new markets
and increased appreciation from our
current users.

52 M COMPUTING

Interface versus
Database
Transaction processing and screen­
oriented interfaces present their own
challenges. One key challenge is to
separate database activities from
user-interface activities. For exam­
ple, it is common to use an M cross­
reference for one field to set a value
into another field so it will be pre­
sented as a default value when File­
Man prompts the user for that second
field. In a transaction-oriented envi­
ronment such as ScreenMan, the data­
base is not updated until after the
user completes the form. Database
changes will not take effect until it is
too late for them to function as de­
faults, so that existing schemes for
getting the right defaults will no
longer work.

Fundamentally, this is a problem of
improperly mixing the database with
the interface. It has become a serious
problem only with the advent of new
technology (specifically, screens and
transaction processing) that modern­
ized our approach to database and in­
terfaces, sharpening the distinctions
between them. When solving inter­
face problems, look for new ways to
solve them and call on us for the tools
you need where they do not already
exist.

A Job Well Done
Considering the complexity of data­
base management, this is actually a
surprisingly short list of rules that are
key for using FileMan's program­
ming hooks. Any progress comes
with a price, of course, and the move
to a modem standard and a modem
database management system is no

exception. Remember that once you
have completed your work in this
area, it will remain done. Docu­
mented hooks and their features will
remain documented. Likewise, seg­
regated input/output, interface, and
computation will remain so. Applying
these rules will help you make the
most of the FileMan programming
hooks we will be describing in later
issues of M Computing. M

Forward your FileMan questions to the
FILEMAN DEVELOPMENT TEAM on
the Veterans Affairs' FORUM system, or
write to: V AISC6-San Francisco, Suite 600,
301 Howard Street, San Francisco, CA
94105.

Rick Marshall works at the Seattle Develop­
ment Satellite office of the V A's San Fran­
cisco Information Center. He is a member
of the FileMan development team.

Assistant Director of
Information Systems

The Vista Hill Foiedation, the largest

provider of mental health care services

in San Diego County, is seeking an

individual with a wide variety of IS and

health care experience. The ideal

candidate will have five years'

experience in the information systems

field, min. two years' supervisory

experience, and BS or equivalent in CS,

MIS, or related field. Must have DEC

background with M/IDX expereince

desirable.

For immediate consideration, please

send resume to:

Vista Hill Foundation
2355 Northside Drive
San Diego, CA 92108

Or, for further information

please contact:

Scott Nishida, 619-563-0184 ext. 220.

An Equal Opportunity Employer

February 1994

