
M'S NEW
INTERFACE

The M Windowing API:
Expansive Tool or Expensive Toy?

by Gardner S. Trask III

The M windowing application program interface
(MW API) has been touted as the most amazing ad
vancement to M since machines got powerful enough

for eight character variable names.[1] But is the MWAPI
worthy of all this hype? Is the MW API an expansive tool or
just an expensive toy? Is the MW API a panacea or a placebo?

It seems that around every corner there is a user or a manager
screaming "Gl.Jiize! WINDOWize! Use OOPS! Use ClienU
Server!" simply because of the latest techno-buzz word in
Newsweek or USA Today. New paradigms and development
requests encroach on everyone's limited development re
sources. Now is the time to start asking some important ques
tions: What does windowing really entail? Will it improve
sales? Can I retrofit my application easily? And what are the
real costs?

What we need to know is, what is the dark side of windowing?

This article, the first in a three-part series to offer in-depth
windows information, will discuss the windows environment
and its relationship to existing programming interfaces and
practices. It will discuss in general terms how windowing
will affect your programming methodology, style, and code.
The second installment will discuss the vernacular of win
dows, i.e., "What is a radio button or list box?", "What's
an event driver?", "How does the mouse interact with my
application?" The third installment will build an actual appli
cation using the MDC Type-A MW APL

Should You Really Open the Window?
Some think "windows" are what they see when using Micro
soft Windows or Macintoshes.[2] Windowing does not sim
ply entail a visual desktop or mean creating an icon to repre
sent complex commands for the user to "click" in order to
save keystrokes. In the context of this article, windowing is
a new method of entering, modifying, and displaying data
that is intuitive and visually appealing for the end user.

We who work in M have become accustomed to the "(D)roll
and scroll" interface, where the user answers the first question,

February 1994

has the response run through some validation and error-checking
code, and is then prompted for the next question. Roll and scroll
went hand-in-hand with the "cafe menu" interface, which center
filled the screen with all available menu alternatives and then
invited the user to "Select an Option - 1 thru 10."

The next generation of interface, the panel painter, placed
all the questions it could fit up onto a screen, and forced
users to answer prompts in a predefined sequence, error
checking as it went along. And most recently, we have had
M-powered "intelligent" panels and "pseudo-windows" that
allow the user to arrow-key from question to question and
even to hit some buttons that call for help text or other
processes. But all of these interfaces are ancient and outdated
in the mainstream computer world. A recent Database maga
zine review of several text retrieval software packages (writ
ten in various languages) definitively illustrates the short
comings of interfaces written in M. When describing the
user interfaces of specific products, the authors wrote:

"[Product name] uses a character based line-oriented inter
face. This is probably due to its MUMPS multi-user, termi
nal-oriented foundation. This is the weakest part of the pack
age. In these days of windows and graphical user interfaces,
having to deal with line-oriented editors is a real frustration.
Fifteen years ago, when we would have taken the line
oriented interface as standard, this would have been a dyna
mite package. Now, were it not for all the power and flexi
bility that the package offers, we would consider it too
outdated A screen-oriented editor and more point-and
shoot menus would go a long way toward making this an
easy-to-use package. "[3]

Developers and vendors may ask, Could someone insert our
product's name in this quote? If the answer is yes, perhaps
it is time to crack open the window.

So you think you are ready "to window"? First you will
need the beta version of ACME Corporation's latest imple
mentation of the Type-A MW API standard. And you proba
bly have the I 20-page MT A standards tome X 11/SC l l/TG4/
WG6/NCC-l701-D (fraught with help text and easy-to-use
examples) by your side.[4] Now you may think you are
ready to put windows in your products.

M COMPUTING 45

But wait. Before beginning, consider some important con
cepts and paradigms that may be new to users, programmers,
or developers. Your view of data entry, manipulation, and
presentation is about to change forever. Windows precludes
a linear, single-thread, top-down, fall-through mind-set. Us
ers will no longer conform the sequence of questions and
answers. They will want to manipulate not only the sequence
of questions, but also question appearance and location on
menus and panels. Previous error-checking structures, based
on question sequencing, are no longer valid; e.g., prompting
for the "pregnancy" question can no longer depend on a
previous response to the "gender" prompt. Windows devel
opers recognize that a user might employ a combination of
a keyboard, a mouse, a light-pen, or possibly a touch screen
to input data. Windows programmers realize that users may
want to answer questions starting from the bottom of the
screen or reconfigure the screen in a specific order, or in
specific colors. The applications can no longer expect the
individual user to conform; now it is developers and pro
grammers who must be flexible.

Emulate the Real World
The first, most important concept to incorporate is consistency!

Now that this great new tool is available, there may be an
inclination to add every possible bell and whistle all at once,
but beware, there is danger in this frivolity. It's like getting
a deluxe Mr. Potato-Head set: after you have piled on every
set of eyes, arms, lips, hats, and glasses (and don't forget
the pipe), poor Mr. Potato-Head looks overloaded, cluttered,
and nothing at all like a real Potato-Head. It is strongly
recommended that developers resist the urge to add one of
every available gadget type, font size, and color into each
window.

Screen development can be difficult, but it is unreasonable
to expect people to be master screen engineers right off. Just
as fancy desktop publishing software did not automatically
create slick, professionally developed newsletters, the new
MW API does not automatically lay out the screen in rich,
snappy, great-looking formats. This is up to the windows
developer. But don't fear, help is available.

Originally developed by IBM, the common user access
(CUA) standard tries to define a user interface structure and
navigation standard for all "windows-style" applications.
The CUA defines such things as how to move between
fields, how a menu should be structured, how help text
should look, how windows should be layered on top of each
other, etc.

46 Al COMPUTING

The CUA provided the base for the Microsoft Windows-style
interface. As a matter of consistency, most windows developers
are using a hybrid-CUA. And by examining most of the sus
taining, major software packages and vendors, commonalities
in architecture, form, and function can be discerned. While this
sounds like a lot of predefined structure for open-structure pro
grammers to adapt to, the reality is that this is what the market
expects. Think about it, who hates roll and scroll the most? Not
the person who only works on the mainframe and has never seen
a window. No, it's the person who has to switch back and forth
between third-generation roll-and-scroll windows and those
clean, intuitive, easily read windows with a common architec
ture. Because users see how easy and intuitive WordPerfect
menus are, or how Lotus works, or how other main-stream win
dows-based products look and feel, when they are forced to use
roll and scroll screens or windows that look homemade and un
professional, they lament, "Why can't all my software look and
work the same?"

It is therefore strongly suggested that new windows develop
ers look to the CUA and other windows products for guid
ance in structure, look-and-feel, and form. If you want clean,
crisp screens that are generally accepted by "power users,"
look to what the "big boys" are doing. If most windows
applications have menu bars placed horizontally at the top
of the window, then don't develop menu bars vertically on
the left margin. If everybody layers windows from the top
left-hand side diagonally to the bottom right, then so should
you. The key to acceptability is compatibility.

Of course, when you first open this Pandora's box, play around
with it at will. Make all the gadgets different sizes, pop open
windows all over the screen, and make every button a different
checkerboard color! But when the learning and exploring is
done, put away the abstract impressionist artistic tendencies.
Picasso could never have developed a professional window.
Look and see what the world perceives as a sharp and profes
sional look and feel, and emulate it. Otherwise, you'll be the
only one in neon-orange at the fancy dress ball.

The User Did WHAT??
Two other important paradigm shifts are the concepts of event
processing and user control.

Event processing takes the flow oflogic and error checking from
the developer's hands and puts it in the control of the user. To
borrow a popular analogy: Let's suppose a developer is program
ming a car to drive from point A to point B. The old top-down
logic would include steps to insert key, check to see that the
transmission was in "park," depress gas, tum key, check to see
if the engine started, etc. Event processing visualizes the dash
board as a set of separate objects or gadgets that can be manipu-

February 1994

lated independently, and in no specific order. An event-control
· process is sitting as a background job, and when it perceives a
"change" or event, it passes this information to the appropriate
gadget. Perhaps the user wishes to change the radio station, or
turn on the defroster, or flash the high beams at an oncoming
car. All these gadgets are controlled by users in an order that
they choose. So, the transmission gadget, as an independent
process, is simply sitting in a wait state until an "event" happens
to it. And when the user chooses to shift to reverse, the transmis
sion gadget "awakes" and takes it upon itself to do some error
checking and act accordingly. Encapsulating an event and its
parameters, error checking, and processing into the proper gad
get can be a formidable change to existing programming archi
tecture.

New windows developers must also recognize the concept
of user control. Users should be able to modify the display
environment as much as is logically and technically feasible.
Changes in background and foreground colors, time-out
rates, movementof fields, the ability to drag-and-drop help
windows around the screen-all these are important to user
interaction and for the "market acceptance" of a product.

Speed also plays a role here. If a process or method is going
to take a while, either start it as a background process, or
at the very least, give the user feedback on the progress.
Perhaps change the cursor to an hourglass symbol, or add
a"% Complete" window in the foreground. Nothing is more
frustrating than waiting for a background task to finish when
you have no idea how long it will take.

The Profit Motive
With all the changes that have been described, should an ap
plication vendor even bother? After all, some users still have
40-column punch-card sorters and paper-tape readers, and
microcomputers and workstations are a long way off, so why
go through the expense and trouble? Well, the answer, in a
word, is money! If applications and tools don't utilize win
dows, they can pretty much be guaranteed to cost you money
in either lost opportunities or lost customers. Customers
won't hesitate to flip to a product that is easier to learn, easier
to use, and more friendly.

The fact is, studies have proven that people prefer color to
black and white, they prefer graphics to text, and they prefer
a standard, familiar interface to several different styles. Stud
ies have also proven that a window interface speeds training,
reduces data-entry edits and errors, and increases productiv
ity. Thus, it makes business sense to go to windows. To para
phrase another analogy: At one time there must have been
dozens of companies manufacturing buggy whips, and the
last company to make buggy whips probably made the best

February 1994

buggy whip of all. Do you really want to keep making buggy
whips? How long will customers support applications and
tools with third-generation interfaces?

Now for the Upside
After listening to all the work, cost, and time it is going to
take to bring interfaces into the 1990s, it is time for you to
hear a little secret: You are sitting on a gold mine. M develop
ers have unique opportunities that no other windows develop
ers have. Without preaching to the choir about M, it must
be noted that the M language will be the first ever to have
windowing inherent as part of an ANSI standard. What does
that mean to developers? It means that the code written now
can be ported to all vendors conforming to the standard. De
velopers won't have to care whose M the customer has: As
long as it is ANSI standard, it'll run.

What else is unique about windowizing using M Technology?
A major, and very distinct, benefit is that the windowing envi
ronment is not platform specific. Programmers who develop spe
cifically in Microsoft windows (or any other windows language/
tool) are tied exclusively to that environment, forcing all custom
ers into the same environment to run the application. But, under
the MW API, code written in X Window/Motif can, without
modification, run on Microsoft Windows, or Macintosh, or
Windows NT, etc. (and vice versa). No other windows language
can claim this powerful ability. The MW API has been designed
to conform to no specific windows vendor, and to actually run
on any of them. (Obviously, mapping the MW API to a windows
environment is the responsibility of the M vendor, and develop
ers will have to lobby hard to get as many platform mappings as
possible.)

Are there other advantages to using M? Yes, indeed. The
use of the MW API in conjunction with other M features and
bindings makes this one of the most powerful environments
available. For example, programmers can create dynamic,
late-binding windows. That is, in all other environments,
all possible windows have to be developed, compiled, and
saved prior to use. In M, a window that has never existed
can be developed on the fly. For example, the medical
"patient" window might ask demographic questions such as
age and gender; based on the answers, a brand new, unique
"symptoms/diagnosis" window could be developed to ask
questions specific to that patient's gender and age group.
This window may never have existed until run time. This
capability is all but impossible with the other windows envi
ronments.

Also, this is a most opportune time to incorporate object
oriented programming techniques into your new system.
The basis of the MW API is to use structured system variables -M COMPUTING 47

What is a Gadget?
What kind of Values can I assign?

Answers to these questions and more
are just a few~ clicks away.

Mw,4PI Reference & Tutorial CBI
An On-Line Interactive Tool for learning the M
Windowing AP!! The Tutorial guides the program
mer through a Comprehensive Tutorial that covers
all important features of the MWAPI. Exercises are
presented for all gadgets. A completely functional
windows application is built. The Reference
contains the full MWAPI specification in hypertext
format. It can reside in a Window for quick visual
access to gadgets at all times.

ESI also has other CBl's and Lecture/Workshops
available in M Programming, File Manager, MSM,

DSM, DTM, Object-Oriented Programming,
VMS Concepts and EsiAuthor.

Call ES/ for more details!

EDUCATIONAL SYSTEMS, INC.
5 Commonwealth Road• Natick, MA 01760
Tel: (508) 651-1400 • Fax: (508) 651-0708

and merge commands to take existing code, processes, and/
or methods and create brand new windows. This fits well
with the OOPS model of classes, methods, objects, and the
"inheritance" of common attributes into new objects.

This is a brief overview of some of the benefits of a windows
environment written in M. For a more complete picture, I
recommend you read the article "Peeking at the New M
Windowing API" in the April 1993 M Computing. In this
article Guy Gardner describes, among other things, architec
tural features of the windowing API and M's particular
windowing advantages. [3)

M technology is standing on the threshold of a brave new
world. M developers now have the tools to make or break
M as a language and technology. For those of us ready to
step across the threshold and embrace this technology, one
which experts say mainstream applications will have to uti
lize to be successful, great benefits await. Carpe diem
seize the day. Al

Guy Gardner and Thomas Salander gave invaluable input and direction for
this article. Also, thanks to the MWAPI subcommittee and others on the
MUMPS Development Committee (MDC) who made MW API possible
through their tireless work. And special thanks to Micronetics Design Cor
poration, Digital Equipment Corporation, and InterSystems Corporation
for use and review of beta MW API documentation and/or software.

48 Al COMPUTING

REPRINTS ARE AVAILABLE!!
Please call the MT A office at

301-431-4070 for details.

Advertiser Index
We appreciate these sponsors of the February issue, and all the compa

nies who support the M community with experience, ability, and talent.

Arnet ... 3

CoMed ... 37

Cue Data Services . 6
CyberTools, Inc .. 17

Data Methods, Inc. 55

Digital Equipment Corporation cover 4

Educational Systems, Inc 48

Globalware . 55

Greystone Technology Corporation 7

Henry Elliott & Company , 27, 39

lnterSystems Corporation 53

J.J. Althouse & Associates 40
KB Systems, Inc. 29

Micronetics Design Corporation cover 3, 30 - 31
MUMPS AudioFax 25

Poly logics Consulting 12

SciCor, Inc .. 17

Sentient Systems ... 5
Software Technology Services 15

Systems Automation Technology Ltd. 8

Vista Hill Foundation 52

This index appears as a service to our readers. The publisher does

not assume any liability for errors or omissions.,,.

Gardner S. Trask III is aseniorprogrammer/analystforCollaborative Medi
cal Systems in Waltham, Massachusetts, and ownerofMPower Computer
Consultants in Beverly, Massachusetts. He is active with the New England
M Users' Group and board memberof the City of Beverly Computer Com
mission. He has a master's degree from Cambridge College. He is also the
system operator of the NEMUG Bulletin Board System.

Endnotes
1. MW API was produced by the MUMPS Development Committee
(MDC), the ANSI XI I committee responsible for the MUMPS stan
dard, and is currently in the ANSI approval process.
2. Microsoft Programming Series, The Windows lnterf ace: An Applica
tion Design Guide (Penguin Books, 1992).
3. G. Lundeen and C. Tenopir, "Text Retrieval Software for Micro
computers and Beyond: An Overview and Review of Four Packages,"
Database (August 1992): 51-62.
4. MDC Subcommittee 11, M Windowing API, XI I/SCI l/TG4/WG6/
93-17 29-June-1993.
5. G. Gardner, "Peeking atthe New M Windowing API," M Computing
1:2 (April 1993): 13-25.

February 1994

