
GETTING SMARTER
WITHM

Grow Your Own M Program.m.er

by Kate M . . Schell

B oston-ba. sed M programmers may not believe it, but in
some parts of the country, and the world, M program
mers are a rarity. I frequently meet managers who won

der where they will find their next M programmer. Some
times, all they need is a reality check, or a broader look
around; there are many good sources for experienced M help.

Before designing a training program for M programmers,
here are some tips for finding people who already know M:

• Ask your M programming staffers who they know. (And
be sure that they are being compensated at the appropriate
rate for their experience!)

• Contact the M Technology Association's Job Referral
Service for listings of programmers looking for work.

• Contact your local users group (LUG) to find out if it keeps
lists of people who want a new situation. There's a listing of
LUGs and their contact people in MTA's currentMSources.

• Check with the colleges and universities that offer M
courses, again, listed in MSources.

• Advertise in M publications at both the local and national
level.

• Work with the recruiters who specialize in M program
mers. These people advertise in M journals and on elec
tronic bulletin boards.

Let's assume that hiring is hopeless; you've tried some or all
of the above, and experienced people are not available. It's
time to grow your own M programmer(s). I selected the word
grow deliberately. Growth is a process; so is staff training.
The more effort you put into cultivating staff, the more you
will get out of each member. Education takes time: time for
preparation, time for presentation of the material, and time
to review students' progress. (The educators among you will
recognize the equivalence of lesson plans, classroom teach
ing, and correcting homework.) This minimal list of func
tions does not take into account time to keep the teacher on
top of developments in the profession, nor the day-to-day
mentoring that often makes the difference between success
and failure for a new programmer.

34 Al COMPUTING

Why invest in training? Why not just toss a new staff member
into a sink-or-swim program with a manual or two for guid
ance? I learned all of the basics in most of my M jobs by
scouting out manuals and documentation, pestering people
with more experience than mine, and by trial and error. The
"If they can't figure this out they don't really belong here"
approach is common in the M community. I am convinced
that it is a bad idea. I earnestly hope that most of the code I
wrote in my first two years has been replaced by now. I am
certain that most of us would hate to have to maintain the first
five routines we wrote after our discovery of indirection!

Many M programmers in my acquaintance learned to code
by emulating existing code in the system. If there is code in
your system that you find hard to maintain, make sure that it
is not copied. Take the time to tell staff members what is good
and acceptable, and you will increase your chances of getting
good and acceptable code.

It costs a few thousand dollars to provide basic training for
an M programmer. It can cost a lot more than that if you have
to terminate someone's employment. Rewriting code that has
been produced by staff with an inappropriate coding style
is also expensive. You can cut your lds'ses on both ends by
spending some time up front on training.

Training Program Basics
How do you set up a training program? The essential steps
are to:

• Identify a training coordinator;

• Identify training-program goals; and

• Find the means of achieving the identified goals.

It is important to have a coordinator to oversee the training
effort. The key person should have an interest in people and
in the success of the people being trained. A knowledge of
M programming is, of course, essential; however, the person
need not be an expert programmer if there is access to expert
programmers who have good communication skills. Some
where along the line, you are going to need a trainer. If the
program coordinator is not going to be the trainer, the coordi
nator must be able to identify and evaluate the success of
those who do the actual training.

February 1994

The program coordinator should identify the goals for the
training program probably in consultation with those who
will be directing the work of the newly trained staff. A good
training program will focus not only on new staff, but on
the continued development of existing staff. What level of
training and experience ought to be required of a junior pro
grammer, a senior programmer, a project leader? (If these
titles do not fit your organization, plug in the appropriate
ones.) There probably will be more than one level of training,
hence more than one set of goals; there may be more than
one step to the completion of each goal.

Each discrete set of training goals should be explicitly stated
in a document. These documents will become the basis for
your course development, and for evaluating trainers and
trainees. Take the time to do this well. If you cannot state
what you want, you probably will not get it. Surely most of you
have heard the following at one time or another from someone
who "didn't feel the need" for a written goal: "Specification?
What specification? I spent ten minutes talking to the users!"

"\

As an example, let's assume that the goal is to enable new
staff members to write reports. That goal might be fulfilled
through:

• An introduction to M programming;

• An introduction to any tools or utilities in use in your shop;

• An explanation of various devices and device selection;

• An introduction to the program and global documentation
for the systems for which reports are required;

• Description of routine and report naming conventions; and

• Presentation of in-house coding standard documents and
validation tools. (A panel discussion on this topic will take
place at the 1994 MTA Annual Meeting in Reno, Nevada.)

If the goal were to enable a new programmer to do mainte-
nance programming, staff members probably would need all
of the five elements identified above, plus:

• Training in diagnostic techniques (What goes to the error
trap? What doesn't hit the error trap? When is a problem a
software problem versus a hardware problem? Is it really
a coding problem, or is the tape drive off-line?);

• Use of backup and restoration procedures;

• Database repair procedures;

• Procedures for documenting solutions;

• Telephone use protocols (How to answer a call-for exam
ple, with organization name and personal name; how often
to contact customers with open calls; who determines that
a call is closed?); and

• Identification of billable versus nonbillable support.

February 1994

These are just two examples of sets of training goals. You
will have to determine the needs of your organization and
your staff. In many cases, you will be starting from scratch.
The important thing is to get started.

The coordinator does not have to present all of the material
required to attain a set of goals, but must be responsible for
ensuring that the information is provided and, in most cases,
reviewed with the new staff.

Creating goals should include identifying an appropriate time
period for demonstrating proficiency in that skill. For exam
ple, if you want to be able to produce reports, once a staff
member is trained, the individual should be able to code sim
ple reports. Projects ought to be aimed at that level, and
should then get progressively more difficult. Of course, it is
often difficult to persuade users to specify simple reports
when needed. If you can spare the time, you might have new
programmers code new versions of existing reports. They can
then compare their code to code written by a more experi
enced programmer. (Note that the code you are comparing it
with ought to be worth emulating.) New programmers can
also gain valuable experience by rewriting existing M code
in structured format, or rewriting to bring existing code in
line with the current M standard.

The In-House Expert and
Other Resources
Once you have identified goals, identify the resources avail
able to help achieve that goal. Among the resources you
ought to consider are: instruction manuals, documentation,
trainers and courses, and computer-assisted instruction.

I have two current favorite M manuals, both available
through MTA. The ABCs of MUMPS is a good teaching man
ual, and The Complete MUMPS is my favorite reference
manual. Many of the M vendors supply M manuals and sys
tem documentation. (MT A also has a catalog of publications
and software available free of charge.)

Documentation available to staff should include:

• User documentation;

• Routine documentation;

• Global documentation;

• Description of in-house tools and utility routines;

• In-house standards for naming routines and globals; and

• In-house programming standards.

M COMPUTING 35

Programmers need access to user documentation to under
stand functionality. It also helps to establish whether a user
with a complaint understands the system. Routine and global
documentation are a sore point for many companies. Provide
what you have available, and establish requirements to pro
duce documentation for new and modified code. Document
ing a set of routines before allowing modification can ensure
that a new programmer understands the existing code and the
proposed changes.

Documenting in-house utilities, programming standards, and
naming conventions is another traditional weak spot for M
shops. If you have documentation, provide it. If you have
undocumented in-house standards, find someone with the
knowledge who will make the time to get the information into
black and white or bits and bytes.

If you don't have in-house standards, you need to consider
establishing some before your code becomes completely im
possible to maintain. This is a "pay me now or pay me later"
issue. Consultants earn great money fixing code that has been
written without coding standards. Do you accept application
code that uses $VIEW? Do you permit use of z functions and
commands? Can application code contain calls to vendor
supplied utilities?

You need at least one person in your organization who is an
M enthusiast, and likes to share what he or she knows. This
person may have already been identified as the training coor
dinator. To identify the most likely person, ask people where
they take their questions. If that person feels the need for
more training before being officially recognized as an expert,
identify the training needed, and help him or her to get it.
Remember that this person need not be prepared to present
classes, but must be willing and able to answer questions,
and know where to go for answers otherwise.

You also need people who can give classes for staff. These
people could be in-house staff or could be external. There are
people and organizations who offer all sorts of courses in M
and M-based systems. Among them are professional organi
zations, colleges and universities, independent training com
panies, M system vendors, and consultants. Professional
meetings, such as MTA's Annual Meeting, offer courses.
Independent trainers contract to run courses in offices. Or, if
you get together with other organizations in your area, you
might consider sponsoring a course at a central location in
the vicinity.

Training is one area you do not have to handle alone. Many
people train M programmers for a living. For the most part,
they have a good understanding of the amount of material .
that can be absorbed in a day or a week, and they have good

36 M COMPUTING

experience in presenting that material in an interesting and
understandable manner. Some trainers are available to teach
on location at your offices. If you are training a number of
people at one time, this may be the most cost-effective solu
tion. Otherwise, consider sending people to off-site courses.
Sources of outside training include: tutorials at conferences;
professional training companies and consultants; universities
and colleges; vendor instruction in M programming and tools.

In-house staff members probably are the best-suited to han
dle issues such as device selection, in-house coding stan
dards, and documentation.

Making the Right Decision
If the decision has been made to delegate the training to some
one outside the organization, how do you find a good trainer?
The best source for this information remains word of mouth.
Someone who has done a good job for someone you know is
your best bet. Always check references.

Here is a basic checklist of questions when contacting a train
er's references:

• Was the trainer well prepared?

• Were there good handouts?

• Did the trainees come away with the expected proficiency?

• Did the trainees like the instructor?

• Would you hire the trainer again?

• Would a trainee go to another course offered by that
person?

When screening trainers, ask these questions:

• Does the trainer have a standard course?

• How well does it fit with your established goals?

• How many times have they taught the course?

• Are there prerequisites for a given course?

• What kind of manuals and or handouts are used in the
course?

• Are there hands-on assignments?

• Is there a particular emphasis that distinguishes their
training?

And, if classes will be held at your site, find out if the instruc
tor requires a classroom with terminals and what other equip
ment is needed, such as an overhead projector or printer.

Continued on page 38

February 1994

A trainer really should be flexible enough to present material
in a variety of ways. People learn differently; an approach or
example that works well for one person may not work at all
for another. A visual learner (someone who learns best by
seeing concepts) will require a different approach from an
aural learner (one who learns best through hearing presenta
tions). This is one of the reasons I recommend course work,
and good manuals and documentation. The combination
should cover the needs of both groups of learners.

Computer-based instruction (CBI) is another possibility for
presenting information on the M language. There are courses
available through a few sources, among them professional
associations and software vendors. CBI takes the learner
through material on a computer, describing concepts, giving
exercises and tests, and recommending review or progress
based upon the results of those exercises. CBI offers plenty
of help and prompts along the way, but it works better for
some people than others. Aural learners, in particular, may
not find it rewarding. It is important to have an experienced,
enthusiastic M resource as a backup for someone using a CBI
tool; if something was unclear from the presentation, review
may or may not clear up the problem, and access to someone
who can explain and/or demonstrate using another approach
may be more successful.

Workspace and Code Review
Whichever method of training you select, make sure that your
trainees have access to good examples of M code, and that
they can work in an area that will not affect your users. It is
best to create a workspace (a training directory) with a subset
of routines and globals separate from your system. Clean it
out and refresh the data and routines regularly. Otherwise,
you will have newcomers emulating newcomers' code. New
comers must not work with the code that you distribute to
your customers nor with the code being developed by experi
enced programmers. You run the risk of distributing dam
aged code or oflosing the work of a senior employee. Simply
put, the production and development directories are danger
ous playgrounds.

Code review is an important part of training for everyone,
newcomers and experienced people alike. Yes, that sentence
probably of alarmed half the readers. That's good. If your
code cannot stand scrutiny, it probably cannot be maintained
either. Code review, however, is particularly important for
newcomers. Because coding habits are formed early, you
want to catch\ misconceptions and inefficiencies before they
become a problem in your computer system. It is not enough
to test to verify that the code works. I have found working

38 M COMPUTING

code that exercised the system five or ten times harder than
necessary, and even code that worked only because of a bug
in an M implementation.

Trainee Selection
Once you've set up a training program and a place for train
ees to work, whom do you train? If you can, start with your
existing staff. Take the time to enlist staff before bringing
newcomers on board. Without staff support, the program is
doomed. Programming staff may not need the introduction
to M programming, but should understand the goals of the
training system. Your people should use any new procedures
or standards that have been developed to support the pro
gram. If they have problems with parts of the program, take
time for review. The opinion of colleagues is important to
new staff. If the message is that the program is flawed or
useless, putting together the program will have been a wasted
effort.

Now comes the fun part. Whom do you select to train as a
new M programmer? I am certain that the editor will receive
a number ofletters on the opinions expressed here. There are
exceptions to every generalization. Having written that, here
are my general rules: Good prospects include recent college
graduates who know Basic or Pascal, and expert users of your
system who have taken system-design or programming
courses. Also included in the promising category are people
who have been working in detail-oriented jobs who want to
program; musicians, library catalogers, and bookkeepers are
good examples.

Why are these people good prospects? People who know Ba
sic or Pascal are more likely to be oriented toward producing
applications. Pascal requires a structured approach to coding,
which usually produces more legible code. Expert users are
those who use an application and know all of the tricks. They
know the operation from the application side, and are good
resources for design review and questions about why the user
wants a particular functionality. Finally, people who have
worked in detail-oriented jobs understand that a character is
important; they will have the patience to create code and to
debug.

The bias toward college graduates is quite personal; I expect
professional people to be able to recognize basic concepts
in philosophy, mathematics, and literature. I have a marked
preference for people who can write well in English. Tomor
row's junior programmer probably hopes to become a sys
tems analyst in a few years.

Also possible, but more problematic, are people with lots
of background in computing---computer science graduates,

February 1994

ATrENTION M(MUMP£) PQOFEcMIONALS
CURRENT M(MUMPS) EMPLOYMENT OPPOQTUNITIES

Permanent and Contract, Throughout the U.S.
** partial listing **

Henry Elliott and Company Inc., professional recruiters specializing in M technolo8Y permanent and temporary computer inf orma
tion systems placemenl is currently lookifl8 for M(MUMP8), MII0, and/or MAGIC Pro8rammer/Analysts and Project Leaders for
its client companies.
M(MUMP0) permanent positions:
-Programmer, Pro8rammer/Analyst, &nior Programmer/

Anafyst to 52K, Project Leader to 55K -Multip1e positions
exist in the sreater D.C., Bait., MD, VAareas.

-Pro8rammer/Analyst to 45K (PA)
-Pro8rammer/Analyst to 40K (TN)
-&nior/Analyst Prosrammers to 45K (north ofBoston)
-Pro8rammer/Analysts 2 plus years to 42K (Boston)

Consulting/ Contract Assignments:
-PA, 3 months + or - $28 to $40 per hour.
-New York City ~ $40 per hour.
-TX, Ions term assi8nments to $32 per hour.

for More Information Please Contact:

4GL programmers, and FORTRAN programmers among
them_ These folks usually want to write compilers, device
drivers, and tools. The simplicity and elegance of the M
language does not tend to appeal to them. They want more
"challenge." An X-window fanatic won't be happy with the
simplicity of the M windowing application programming in
terface (MW API) either.

At the bottom of my list of promising M programmers are
people who thrive on complexity in computing: assembler
language programmers, C language programmers, and
UNIX wizards. Also included in this category, but for a dif
ferent reason, are programmers with many years of COBOL
experience. I know one COBOL convert to M who under
stands the utility of indirection. Most of the others will write
ten pages of IF statements instead. In fact, if you're going to
hire people with extensive experience in another program
ming language, be ready to pay extra attention in their transi
tion from wizard status back to novice. Their vocabulary may
not match yours, their expectations of the language will be
different, and their frustration level is likely to be very high.

Again, the categories above are very subjective. Look for
someone who wants to do the work you have to offer, and is

February 1994

-Pro8rammer / Analyst to 48K (Cambridge, MA)
-Pro8rammer/Analyst 2 plus years to 45K (NH)
-Pro8rammer/Analyst to 37K (VT)
-Pro8rammer/Analyst to 45K (Chicago, IL)
-Pro8rammer / Analyst to 45K (Dallas, TX area)
-&nior Programmer/ Analyst to 48K (San Francisco/ San Jose, CA area)

I
HENRY

ELLIOTT
&COMPANY

I

70 Walnut <£>treet
Wellesley, MA 02181
617 239-8180
FAX 617 239-8210

* Partial Listins. All fees Are Paid By Our Clienl Companies.

willing to learn the tools of the trade and use them. While
you're at it, ascertain that the person wants to work with you,
and is willing to follow your rules.

Once your training program is established, how do you keep
on top of developments in the language? You 're off to a good
start; you 're reading M Computing. Watch for articles on the
work of the MDC, and articles by expert users. Route your
copy of M Computing to your staff with notes on recom
mended articles. Attend professional society meetings at the
local and national level. Take along as many of your staff as
you can afford to support. The information available at these
meetings ranges from vendor demos to presentations of the
latest projects undertaken by the MUMPS Development
Committee (MDC).

The most important part of training is recognizing that every
one needs it. The second most important part is getting
started. •

The author is the founder of C Schell Systems, an M consulting firm
in the Boston area. In the past twelve years, she has produced code to
run libraries, law firms, development offices, missiles, and medical
departments. She also chairs a subcommittee of the MUMPS Develop
ment Committee. Her e-mail address is cschell@world.std.com.

• COMPUTING 39

