
COMMENTARY

Paradignt Shifts: Part II

Robert S. Craig

For hundreds of years Swiss
watchmakers had a virtual mo
nopoly on watchmaking. The

industry generated millions of dollars
annually, and grew steadily. Then, in
the mid 1980s, a young scientist at a
Swiss watchmaking company devel
oped the quartz movement. His col
leagues' reaction was one of skepti
cism and disbelief that anyone would
want to replace time-honored tech
niques with some new, cheap technol
ogy. This scientist demonstrated his
prototype at a local trade show where
it was spotted by Japanese watchmak
ers who quickly licensed the technol
ogy. Three years later the Swiss
watchmakers were decimated by their
competition and the industry hasn't
recovered to this day.

The Swiss weren't stupid: They were
the victims of a paradigm shift (which
one of them created).

We in the M marketplace have been
part of the evolution of underlying
technologies available to users. Little
more than three years ago the idea of
building an application to run on a
bit-mapped display controlled by a

28 M COMPUTING

by Robert S. Craig

mouse was an academic curiosity for
most M programmers. The variety of
products and tools available for most
visual environments multiplies. We
are nearing the adoption of the first
ANSI standard specification for plat
form-independent graphical user in
terface in any computer language.
Yet, most M development shops,
managers, and programmers are still
using character-cell terminals.

The way the programmer needs to
think about how the application inter
acts with the user is literally being
turned inside-out. This is the para
digm shift faced by M. Inside-out
thinking means the screen displays a
prompt, the user reads and validates
some text, the program then processes
the input and moves onto the section
of code in sequence. Outside-in think
ing focuses on event processing, in
which the user controls the interface
and is free to select any number of ac
tions, which must be processed as
they are received by the application.

The new paradigm also affects how
the programmer presents information
to the user and can significantly affect
how the programmer deals with vali
dation and errors. When my wife
asked for my help with a computing
problem, I wrote the application using
a GUI-based M product. I soon dis
covered that if I displayed a dialogue
box with some well-labeled data entry
fields and two buttons (OK and Can
cel), she found the application easy
and intuitive to use and she was less
likely to create an error. It took less
training time and less code to validate

· input. She found the application eas-

ier to deal with than character-cell ap
plications I had written previously. I
found the program more interesting
and fun to write.

Reliable, stable, and robust produc
tion environments are becoming the
norm. It was once sufficient to restore
a backup tape and dejoumal to re
cover from a crash; 99 percent avail
ability (or 88 hours of unscheduled
downtime) was good enough for most
systems. Customer demand requires
higher availability (the system is there
when I need it) and reliability (and ~t
works the way it's intended). Plat
form improvements (redundant proc
essors, multipath disks, RAID tech
nology, and more reliable operating
systems) and greater dependence on
mission-critical p:li,Oduction applica
tions mean customers demand up to
99. 9 percent availability-less than
nine hours ofunscheduled downtime.
But many M products do not keep
pace with this demand.

Although several M vendors now sup
port transaction processing, most ap
plications do not take advantage of this
powerful new feature. The developer
who can tell the customer, "You won't
have to worry about the system en
countering any logical corruption due
to a system failure," has an extremely
powerful message for the MIS director
or system manager running a multi
million dollar business on the right M
software. It takes the ability to COMMIT

a transaction and ROLLBACK the data
base if an error occurs. With M Tech
nology we have the ability to create
applications that can go toe-to-toe
with any other production environ-

February 1994

n
I

I
j

EZQ Editor
(for all usi,rs)

SQL Editor
(for powi,r usi,rs) E,,✓ t/f ~er- R e;or-ti,,,

t/4o. t ~'v-e.f t/oa -------------
a 0/40/ee
KB _SQL uses the flexibility of SQL and the power of M
to give you access to your existing M databases,
easily and efficiently.

With a choice of interfaces, technical and nontechnical
users find KB _SQL easy to use but powerful and
versatile enough to create complex queries.

Call for a free demonstration disk !

a s'JAfte/lf.r, /4e.
1638 {}rvl:rle, /)r1i;e, l!erJr@I(, tlf1 22091

-,;1: f103J 318-0105 r@: f103J 318-()569

ment under the most demanding cir
cumstances by combining carefully
designed applications that meet the
ACID (atomicity, consistency, isola
tion, durability) test with fault-toler
ant hardware and operating systems.

Object-oriented programming sys
tems (OOPS) represent yet another
paradigm, rapidly evolving to even
tually dominate the software indus
try. OOPS' s promise is its ability to
simplify programming by using
classes, inheritance, encapsulation,
and polymorphism. A few visionaries
articulate the importance of this tech
nology to the M community, but most
M designers and programmers are
blithely ignorant of the major tenets
and principles underlying OOPS.

While some far-sighted individuals
and companies we know recognize
the importance of these new ways to
build applications, many still think,
"Well, business has been up every
year for the past n years, there's no
reason to believe this won't continue
indefinitely." I believe that the com-

February 1994

panies run by the latter type will be
out of business within five years. Any
M software developer who isn't ac
tively planning to adopt these new
paradigms will discover that increas
ingly sophisticated customers will re
ject old, established technologies for
all but the most mundane heads
down, data-entry tasks.

People, it's time to wake up and smell
the coffee! We, individually and col
lectively, need to learn more about
these new paradigms and incorporate
them into our thinking. If you pro
gram or if you manage a development
staff, read; get some training; come
to the 1994 MT A Annual Meeting
for tutorials, discussions, and other
presentations on the latest develop
ments available in our community
and the future others see; iri short, do
whatever you can to invest in yourself
and your organization by getting the
greatest possible exposure to these
new technologies. If your people ask
for training, send them to the MTA
Annual Meeting and elsewhere to get

SQL Engine

Query
Results

Relational
Data

Dictiona~

---/ M Global.;

it, otherwise you risk losing them to
other companies more committed to
the professional and personal growth
of their employees. If you're a pro
grammer and your management won't
offer training opportunities, run,
don't walk, to the nearest library,
bookstore, or local college and find
out about how you can apply these new
techniques to designing and devel
oping software.

Otherwise, you risk waking up one
day, looking at your quartz watch, and
realizing firsthand what happened to
all those Swiss watchmakers. M

A previous column dealing with paradigm
shifts appeared in the Board Room pages of
the November 1993 issue of M Computing.
See "Ahoy Mate! Paradigm Shift Dead
Ahead!" by Greg Kreis.-Editor.

Bob Craig is the manager of product marketing
for lnterSystems in Cambridge, Massachu
setts. He is on the Editorial Board of the M
Technology Association, and a former Di
rector.

M COMPUTING 29

