
DATABASE 
MANAGEMENT 

Database Systetns: 
Achievetnents and Opportunities 

lJy Avi Silberschatz, Michael Stonebraker, 
and Jeff Ullman 

The article thatfollows was edited by Messrs. Silberschatz, 
Stonebraker, and Ullman, and originally was published in 
Communications of the ACM in October 1991. Copyright 
1991, Association for Computing Machinery, Inc. Reprinted 
by permission. It appears verbatim and in its entirety.­
Editor 

The history of database system research is one of excep­
tional productivity and startling economic impact. 
Barely 20 years old as a basic science research field, 

database research has fueled an information services industry 
estimated at $10 billion per year in the U.S. alone. Achieve­
ments in database research underpin fundamental advances 
in communications systems, transportation and logistics, fi­
nancial management, knowledge-based systems, accessibil­
ity to scientific literature, and a host of other civilian and de­
fense applications. They also serve as the foundation for 
considerable progress in basic science in various fields rang­
ing from computing to biology. 

As impressive as the accomplishments of basic database re­
search have been, there is a growiag awareness and concern 
that only the surface has been scratched in developing an un­
derstanding of the database principles and techniques re­
quired to support the advanced information management ap­
plications that are expected to revolutionize industrialized 
economies early in the nextcentury. Rapid advances in areas 
such as manufacturing science, scientific visualization, ro­
botics, optical storage, and high-speed communications al­
ready threaten to overwhelm the existing substrate of data­
base theory and practice. 

In February 1990, the National Science Foundation convened 
a workshop in Palo Alto, California for the purpose of identi­
fying the technology pull factors that will serve as forcing 
functions for advanced database technology and the corres­
ponding basic research needed to enable that technology. The 
participants included representatives from the academic and 
industrial sides of the database research community. [ 1] The 
primary conclusions of the workshop participants can be 
summarized as follows: 

6 M COMPUTING 

1. A substantial number of the advanced technologies that 
will underpin industrialized economies in the early 21st cen­
tury depend on radically new database technologies that are 
currently not well understood, and that require intensive and 
sustained basic research. 

2. Next-generation database applications will have little in 
common with today's business data processing databases. 
They will involve much more data, require new capabilities 
including type extensions, multimedia support, complex ob­
jects, rule processing, and archival storage, and will necessi­
tate rethinking the algorithms for almost all DBMS opera­
tions. 

3. The cooperation among different organizations on com­
mon scientific, engineering, and commercial problems will 
require large-scale, heterogeneous, distributed databases. 
Very difficult problems lie ahead in the areas of inconsistent 
databases, security, and massive scale-up of distributed 
DBMS technology. 

This article provides further information about these topics, 
as well as a brief description of some\;:;of the important 
achievements of the database research community. 

Background and Scope 
The database research community has been in existence since 
the late 1960s. Starting with modest representation, mostly in 
industrial research laboratories, it has expanded dramatically 
over the last two decades to include substantial efforts at ma­
jor universities, government laboratories and research con­
sortia. Initially, database research centered on the manage­
ment of data in business applications such as automated 
banking, record keeping, and reservation systems. These ap­
plications have four requirements that characterize database 
systems: 

• Efficiency in the access to and modification of very large 
amounts of data; 

• Resilience, or the ability of the data to survive hardware 
crashes and software errors, without sustaining loss or be­
coming inconsistent; 

November 1993 



• Access control, including simultaneous access of data by 
multiple users in a consistent manner and assuring only au­
thorized access to information; and 

• Persistence, the maintenance of data over long periods of 
time, independent of any programs that access the data. 

Database systems research has centered around methods for 
designing systems with these characteristics, and around the 
languages and conceptual tools that help users to access, ma­
nipulate, and design databases. 

Database management systems (DBMSs) are now used in al­
most every computing environment to organize, create and 
maintain important collections of information. The technol­
ogy that makes these systems possible is the direct result of 
a successful program of database research. This article will 
highlight some important achievements of the database re­
search community over the past two decades, including the 
scope and significance of the technological transfer of data­
base research i:.xsults to industry. We focus on the major ac­
complishments of relational databases, transaction manage­
ment, and distributed databases. 

Today, we stand at the threshold of applying database tech­
nology in a variety of new and important directions, including 
scientific databases, design databases, and universal access 
to information. Later in this article we pinpoint two key areas 
in which research will make a significant impact in the next 
few years: next-generation database applications and hetero­
geneous, distributed databases. 

Accomplishments of the 
Last Two Decades 
From among the various directions that the database research 
community has explored, the following three have perhaps 
had the most impact: relational database systems, transaction 
management, and distributed database systems. 

Each has fundamentally affected users of database systems, 
offering either radical simplifications in dealing with data, or 
great enhancement of their capability to manage information. 

Relational Databases 

In 1970 there were two popular approaches used to construct 
database management systems. The first approach, exempli­
fied by IBM's Information Management System (IMS), has 
a data model (mathematical abstraction of data and opera­
tions on data) that requires all data records to be assembled 
into a collection of trees. Consequently, some records are 
root records and all others have unique parent records. The 

November 1993 

query language permitted an application programmer to navi­
gate from root records to the records of interest, accessing 
one record at a time. 

The second approach was typified by the standards of the 
Conference on Data Systems Languages (CODASYL). They 
suggested that the collection of DBMS records be arranged 
into a directed graph. Again, a navigational query language 
was defined, by which an application program could move 
from a specific entry point r~ord to desired information. 

Both the tree-based ( called hierarchical) and graph-based 
(network) approaches to data management have several fun­
damental disadvantages. Consider the following examples: 

1. To answer a specific database request, an application pro­
grammer, skilled in performing disk-oriented optimization, 
must write a complex program to navigate through the data­
base. For example, the company president cannot, at short 
notice, receive a response to the query "How many employ­
ees in the Widget department will retire in the next three 
years?" unless a program exists to count departmental re­
tirees. 

2. When the structure of the database changes, as it will 
whenever new kinds of information are added, application 
programs usually need to be rewritten. 

As a result, the database systems of 1970 were costly to use 
because of the low-level interface between the application 
program and the DBMS, and because the dynamic nature of 
user data mandates continued program maintenance. 

The relational data model, pioneered by E .F. Codd in a series 
of papers in 1970-72, offered a fundamentally different ap­
proach to data storage. Codd suggested that conceptually all 
data be represented by simple tabular data structures (rela­
tions), and that users access data through a high-level, non­
procedural ( or declarative) query language. Instead of writ­
ing an algorithm to obtain desired records one at a time, the 
application programmer is only required to specify a predi­
cate that identifies the desired records or combination of re­
cords. A query optimizer in the DBMS translates the predi­
cate specification into an algorithm to perform database 
access to solve the query. These nonprocedural languages are 
dramatically easier to use than the navigation languages of 
IMS and CODASYL; they lead to higher programmer pro­
ductivity and facilitate direct database access by end users. 

During the 1970s the database research community exten­
sively investigated the relational DBMS concept. They: 

• Invented high-level relational query languages to ease the 
use of the DBMS by both end users and application pro­
grammers. The theory of higher-level query languages has 

M COMPUTING 7 



been developed to provide a firm basis for understanding 
and evaluating the expressive power of database language 
constructs. 

• Developed the theory and algorithms necessary to optimize 
queries-that is, to translate queries in the high-level rela­
tional query languages into plans that are as efficient as 
what a skilled programmer would have written using one of 
the earlier DBMSs for accessing the data. This technology 
probably represents the most successful experiment in opti­
mization of very high-level languages among all varieties 
of computer systems. 

• Formulated a theory of normalization to help with database 
design by eliminating redundancy and certain logical 
anomalies from the data. 

• Constructed algorithms to allocate tuples of relations to 
pages (blocks of records) in files on secondary storage, to 
minimize the average cost of accessing those tuples. 

• Constructed buffer management algorithms to exploit 
knowledge of access patterns for moving pages back and 
forth between disk and a main memory buffer pool. 

• Constructed indexing techniques to provide fast associative 
access to random single records and/ or sets of records spec­
ified by values or value ranges for one or more attributes. 

• Implemented prototype relational DBMSs that formed the 
nucleus for many of the present commercial relational 
DBMSs. 

It was only with considerable research, 
much of it focused on basic principles of 

relational databases, that large-scale 
implementations were made possible. The 

next generation of databases calls for 
continued research into the foundations of 
database systems, in the expectation that 

other such useful "toys" will emerge. 

As a result of this research in the 1970s, numerous commer­
cial products based on the relational concept appeared in the 
1980s. Not only were the ideas identified by the research 
community picked up and used by the vendors, but also, sev­
eral of the commercial developments were led by implemen­
tors of the earlier research prototypes. Today, commercial 
relational database systems are available on _virtually any 
hardware platform from personal computer to mainframe, 
and are standard software on all new computers in the 1990s. 

November 1993 

There is a moral to be learned from the success of relational 
database systems. When the relational data model was first 
proposed, it was regarded as an elegant theoretical construct 
but implementable only as a toy. It was only with consider­
able research, much of it focused on basic principles of rela­
tional databases, that large-scale implementations were made 
possible. The next generation of databases calls for-continued 
research into the foundations of database systems, in the ex­
pectation that other such useful "toys" will emerge. 

Transaction Management 

During the last two decades, database researchers have also 
pioneered the transaction concept. A transaction is a se­
quence of operations that must appear "atomic" when exe­
cuted. For example, when a bank customer moves $100 from 
account A to account B, the database systems must ensure 
that either both of the operations-Debit A and Credit B­
happen or that neither happens (and the customer is in­
formed). If only the first occurs, then the customer has lost 
$100, and an inconsistent database state results. 

To guarantee that a transaction transforms the database from 
one consistent state to another requires that: 

1. The concurrent execution of transactions must be such 
that each transaction appears to execute in isolation. Con­
currency control is the technique used to provide this as­
surance. 

2. System failures, either of hardware or software, must not 
result in inconsistent database states. A transaction must exe­
cute in its entirety or not at all. Recovery is the technique used 
to provide this assurance. 

Concurrent transactions in the system must be synchronized 
correctly in order to guarantee that consistency is preserved. 
Forinstance, while we are moving $ 100 from A to B, a simul­
taneous movement of $300 from account B to account C 
should result in a net deduction of $200 from B. The view of 
correct synchronization of transactions is that they must be 
serializable; that is, the effect on the database of any number 
of transactions executing in parallel must be the same as if 
they were executed one after another, in some order. 

During the 1970s and early 1980s the DBMS research com­
munity worked extensively on the transaction model. First, 
the theory of serializability was worked out in detail, and pre­
cise definitions of the correctness of schedulers (algorithms 
for deciding when transactions could execute) were pro­
duced. Second, numerous concurrency control algorithms 
were invented that ensure serializability. These included al­
gorithms based on: 

M COMPUTING 9 



• Locking data items to prohibit conflicting accesses. Espe­
cially important is a technique called two-phase locking, 
which guarantees serializability by requiring a transaction 
to obtain all the locks it will ever need before releasing any 
locks. 

• Timestamping accesses so the system could prevent viola-
tions of serializability. 

• Keeping multiple versions of data objects available. 

The various algorithms were subjected to rigorous experi­
mental studies and theoretical analysis to determine the con­
ditions under which each was preferred. 

Recovery is the other essential component of transaction 
management. We must guarantee that all the effects of a 
transaction are installed in the database, or that none of them 
are, and this guarantee must be kept even when a system crash 
loses the contents of main memory. During the late 1970s 
and early 1980s, two major approaches to this service were 
investigated, namely: 

Write-ahead logging. A summary of the effects of a transac­
tion is stored in a sequential file, called a log, before the 
changes are installed in the database itself. The log is on disk 
or tape where it can survive system crashes and power fail­
ures. When a transaction completes, the logged changes are 
then posted to the database. If a transaction fails to complete, 
the log is used to restore the prior database state. 

Shadow file techniques. New copies of entire data items, usu­
ally disk pages, are created to reflect the effects of a transac­
tion and are written to the disk in entirely new locations. A 
single atomic action remaps the data pages, so as to substitute 
the new versions for the old when the transaction completes. 
If a transaction fails, the new versions are discarded. 

Recovery techniques have been extended to cope with the 
failure of the stable medium as well. A backup copy of the 
data is stored on an entirely separate device. Then, with log­
ging, the log can be used to roll forward the backup copy to 
the current state. 

Distributed Databases 
A third area in which the DBMS research community played 
a vital role is distributed databases. In the late 1970s there 
was a realization that organizations are fundamentally decen­
tralized and require databases at multiple sites. For example, 
information about the California customers of a company 
might be stored on a machine in Los Angeles, while data 
about the New England customers could exist on a machine 

10 Al COMPUTING 

in Boston. Such data distribution moves the data closer to the 
people who are responsible for it and reduces remote commu­
nication costs. 

Furthermore, the decentralized system is more likely to be 
available when crashes occur. If a single, central site goes 
down, all data is unavailable. However, if one of several re­
gional sites goes down, only part of the total database is inac­
cessible. Moreover, if the company chooses to pay the cost 
of multiple copies of important data, then a single site failure 
need not cause data inaccessibility. 

. .. we see ... aggressive research support 
by government and industry, followed by 
rapid technology trans/ er from research 

labs to commercial products. 

In a multidatabase environment we strive to provide location 
transparency. That is, all data should appear to the user as if 
they are located at his or her particular site. Moreover, the 
user should be able to execute normal transactions against 
such data. Providing location transparency required the 
DBMS research community to investigate new algorithms for 
distributed query optimization, concurrency control, crash 
recovery, and support of multiple copies of data objects for 
higher performance and availability. 

In the early 1980s the research community'rose to this chal­
lenge. Distributed concurrency control algorithms were de­
signed, implemented and tested. Again, simulation studies 
and analysis compared the candidates to see which algo­
rithms were dominant. The fundamental notion of a two­
phase commit to ensure the possibility of crash recovery in 
a distributed database was discovered. Algorithms were de­
signed to recover from processor and communication fail­
ures, and data patch schemes were put forward to rejoin dis­
tributed databases that had been forced to operate 
independently after a network failure. Technology for opti­
mizing distributed queries was developed, along with new 
algorithms to perform the basic operations on data in a distrib­
uted environment. Finally, various algorithms for the update 
of multiple copies of a data item were invented. These ensure 
that all copies of each item are consistent. 

All the major DBMS vendors are presently commercializing 
distributed DBMS technology. Again we see the same pat­
tern discussed earlier for relational databases and transac­
tions, namely aggressive research support by government 
and industry, followed by rapid technology transfer from 
research labs to commercial products. 

November 1993 



The Next Challenges 
Some might argue that database systems are a mature tech­
nology and it is therefore time to refocus research onto other 
topics. Certainly relational DBMSs, both centralized and dis­
tributed, are well studied, and commercialization is well 
along. Object management ideas, following the philosophy 
of object-oriented programming, have been extensively in­
vestigated over the last few years and should allow more gen­
eral kinds of data elements to be placed in databases than the 
numbers and character strings supported in traditional sys­
tems. The relentless pace of advances in hardware technol­
ogy makes CPUs, memory and disks drastically cheaper each 
year. Current databases will therefore become progressively 
cheaper to deploy as the 1990s unfold. Perhaps the DBMS 
area should be declared solved, and energy and research 
efforts allocated elsewhere. 

We argue strongly here that such a turn of events would be 
a serious mistake. Rather, we claim that solutions to the im-

·""' portant database problems of the year 2000 and beyond are 
not known. Moreover, hardware advances of the next decade 
will not make brute force solutions economical, because the 
scale of the prospective applications is simply too great. 

In this section we highlight two key areas in which we feel 
important research contributions are required in order to 
make future DBMS applications viable: Next-generation 
database applications and heterogeneous, distributed data­
bases. 

In addition to being important intellectual challenges in their 
own right, their solutions offer products and technology of 
great social and economic importance, including improved 
delivery of medical care, advanced design and manufacturing 
systems, enhanced tools for scientists, greater per capita pro­
ductivity through increased personal access to information, 
and new military applications. 

The Research Agenda for Next-Generation 
DBMS Applications 

To motivate the discussion of research problems that follows, 
in this section we present several examples of the kinds of 
database applications that we expect will be built during the 
next decade. 

1. For many years, NASA scientists have been collecting 
vast amounts of information from space. They estimate that 
they require storage for 1016 bytes of data (about I0,000 opti­
cal disk jukeboxes) just to maintain a few years' worth of 
satellite image data they will collect in the 1990s. Moreover, 
they are very reluctant to throw anything away, lest it be ex-

November 1993 

actly the data set needed by a future scientist to test some 
hypothesis. It is unclear how this database can be stored and 
searched for relevant images using current or soon-to-be 
available technology. 

2. Databases serve as the backbone of computer-aided de­
sign systems. For example, civil engineers envision a facili­
ties-engineering design system that manages all information 
about a project, such as a skyscraper. This database must 
maintain and integrate information about the project from the 
viewpoints of hundreds of subcontractors. For example, 
when an electrician puts a hole in a beam to let a wire through, 
the load-bearing soundness of the structure could be compro­
mised. The design system should, ideally, recalculate the 
stresses, or at the least, warn the cognizant engineer that a 
problem may exist. 

3. The National Institutes of Health (NIH) and the U.S. De­
partment of Energy (DOE) have embarked on a joint national 
initiative to construct the DNA sequence corresponding to 
the human genome. The gene sequence is several billion ele­
ments long, and its many subsequences define complex and 
variable objects. The matching of individuals' medical prob­
lems to differences in genetic makeup is a staggering problem 
and will require new technologies of data representation and 
search. 

4. Several large department stores already record every 
product-code-scanning action of every cashier in every store 
in their chain. Buyers run ad-hoc queries on this historical 
database in an attempt to discover buying patterns and make 
stocking decisions. This application taxes the capacity of 
available disk systems. Moreover, as the cost of disk space 
declines, the retail chain will keep a larger and larger history 
to track buying habits more accurately. This process of "min­
ing" data for hidden patterns is not limited to commercial 
applications. We foresee similar applications, often with 
even larger databases, in science, medicine, intelligence 
gathering, and many other areas. 

5. Most insurance firms have a substantial on-line database 
that records the policy coverage of the firm's customers. 
These databases will soon be enhanced with multimedia data 
such as photographs of property damaged, digitized images 
of handwritten claim forms, audio transcripts of appraisers' 
evaluations, images of specially insured objects, and so on. 
Since image data is exceedingly large, such databases will 
become enormous. Moreover, future systems may well store 
video walk-throughs of houses in conjunction with a home­
owners policy, further enlarging the size of this class of data­
bases. Again, applications of this type are not limited to com­
mercial enterprises. 

., COMPUTING 11 



At Sunquest, a leader in Hospital 
Information Systems and MUMPS, 
based Clinical Information Systems, 
our Software Engineers and Applica, 
tions Developers enjoy both unique 
technical challenges and the best qual, 
ity lifestyle in the southwest. Our sue, 
cessful organization has doubled in size 
in just the last two years. This steady 
increase presents an ideal atmosphere 
for forward,thinking professionals. 

MUMPS/M-FORM 
PROFESSIONALS 

Exciting new medical software de, 
velopment projects have created 
additional opportunities to join our 
dynamic team. 

In addition to a thriving industry, our 
beautiful and affordable southwest lo, 
cation offers a quality lifestyle and all the 
amenities of a major metropolitan city. 

We provide an excellent compensa, 
tion and benefits package in a people, 
oriented work environment. For confi, 
dential consideration, please send 
resume with salary history to: 

■Sunquest 
-~ Information Systems 

Attn: HR Dept. MP/BB 
4801 E. Broadway 
Tucson, AZ 85711 
EOE. Principals only, please. 

12 M COMPUTING 

These applications not only introduce problems of size, they 
also introduce problems with respect to all conventional as­
pects of DBMS technology (e.g., they pose fundamentally 
new requirements for access patterns, transactions, concur­
rency control, and data representation). These applications 
have in common the property that they will push the limits 
of available technology for the foreseeable future. As com­
puting resources become cheaper, these problems are all 
likely to expand at the same or at a faster rate. Hence, they 
cannot be overcome simply,by waiting for the technology to 
bring computing costs down to an acceptable level. 

We now turn to the research problems that must be solved to 
make such next-generation applications work. Next-genera­
tion applications require new services in several different 
areas in order to succeed. 

New Kinds of Data 
Many next-generation applications entail storing large and 
internally complex objects. The insurance example, (5) re­
quires storage of images. Scientific and design databases of­
ten deal with very large arrays or sequences of data elements. 
A database for software engineering might store program 
statements, and a chemical database might store protein 
structures. We need solutions to two classes of problems: 
data access and data type management. 

Current databases are optimized for delivering small records 
to an application program. When fields in &.record become 
very large, this paradigm breaks down. The DBMS should 
read a large object only once and place it directly at its final 
destination. Protocols must be designed to chunk large ob­
jects into manageable size pieces for the application to pro­
cess. A new generation of query languages will be required 
to support querying of array and sequence data as will mecha­
nisms for easily manipulating disk and archive representa­
tions of such objects. In addition, extended storage structures 
and indexing techniques will be needed to support efficient 
processing of such data. 

We need solutions to two classes 
of problems: data access and data 

type management. 

A second class of problems concerns type management. 
There must be a way for the programmer to construct the 
types appropriate for his or her application. The need for 
more flexible type systems has been one of the major forces 
in the development of object-oriented databases. One of the 
drawbacks of the systems developed so far is that type-check-

November 1993 



ing is largely dynamic, which lays open the possibility that 
programming errors tend to show up at run time, not during 
compilation. In order to provide the database application de­
signer with the same safety nets that are provided by modem 
high-level programming languages, we must determine how 
we can combine static type disciplines with persistent data 
and evolution of the database structure over time. 

Rule Processing 

Next-generation applications will frequently involve a large 
number of rules, which take declarative ("if A is true, then 
Bis true"), and imperative ("if A is true, then do C") forms. 
For example, a design database should notify the proper 
designer if a modification by a second designer may have 
affected the subsystem that is the responsibility of the first 
designer. Such rules may include elaborate constraints that 
the designer wants enforced, triggered actions that require 
processing when specific events take place, and complex 
deductions that should be made automatically within the 
system. It is common to call such systems knowledge-base 
systems, although we prefer to view them as a natural, al­
though difficult, extension of DBMS technology. 

Rules have received considerable attention as the mechanism 
for triggering, data mining (as discussed in the department 
store example), and other forms of reasoning about data. De­
clarative rules are advantageous because they provide a logi­
cal declaration of what the user wants rather than a detailed 
specification of how the results are to be obtained. Similarly, 
imperative rules allow for a declarative specification of the 
conditions under which a certain action is to be taken. The 
value of declarativeness in relational query languages like 
SQL (the most common such language) has been amply dem­
onstrated, and an extension of the idea to the next generation 
of query languages is desirable. 

Traditionally, rule processing has been performed by sepa­
rate subsystems, usually called expert system shells. How­
ever, applications such as the notification example cannot be 
done efficiently by a separate subsystem, and such rule pro­
cessing must be performed directly by the DBMS. Research 
is needed on how to specify the rules and on how to process 
a large rule base efficiently. Although considerable effort has 
been directed at these topics by the artificial intelligence (AI) 
community, the focus has been on approaches that assume all 
relevant data structures are in main memory, such as RETE 
networks. Next-generation applications are far too big to be 
amenable to such techniques. 

We also need tools that will allow us to validate and debug 
very large collections of rules. In a large system, the addition 
of a single rule can easily introduce an inconsistency in the 

November 1993 

knowledge base or cause chaotic and unexpected effects and 
can even end up repeatedly firing itself. We need techniques 
to decompose sets of rules into manageable components and 
prevent ( or control in a useful way) such inconsistencies and 
repeated rule firing. 

New Concepts in Data Models 

Many of the new applications will involve primitive concepts 
not found in most current applications, and there is a need to 
build them cleanly into specialized or extended query lan­
guages. Issues range from efficiency of implementation to 
the fundamental theory underlying important primitives. For 
example, we need to consider: 

Spatial Data. Many scientific databases have two- or three­
dimensional points, lines, and polygons as data elements. A 
typical search is to find the 10 closest neighbors to some given 
data element. Solving such queries will require sophisticated, 
new multidimensional access methods. There has been sub­
stantial research in this area, but most has been oriented to­
ward main memory data structures, such as quad trees and 
segment trees. The disk-oriented structures, including K-D­
B trees and R-trees, do not perform particularly well when 
given real-world data. 

Time. In many exploratory applications, one might wish to 
retrieve and explore the database state as of some point in the 
past or to retrieve the time history of a particular data value. ' 
Engineers, shopkeepers, and physicists all require different 
notions of time. No support for an algebra over time exists 
in any current commercial DBMS, although research proto­
types and special-purpose systems have been built. However, 
there is not even an agreement across systems on what a "time 
interval" is; for example, is it discrete or continuous, open­
ended or closed? 

Uncertainty. There are applications, such as identification of 
features from satellite photographs, for which we need to at­
tach a likelihood that data represents a certain phenomenon. 
Reasoning under uncertainty, especially when a conclusion 
must be derived from several interrelated partial or alterna­
tive results, is a problem that the AI community has addressed 
for many years, with only modest success. Further research 
is essential, as we must learn not only to cope with data of 
limited reliability, but to do so efficiently, with massive 
amounts of data. 

Scaling Up 

It will be necessary to scale all DBMS algorithms to operate 
effectively on databases of the size contemplated by next­
generation applications, often several orders of magnitude 

.. COMPUTING 13 



bigger than the largest databases found today. Databases 
larger than a terabyte (1012 bytes) will not be unusual. The 
current architecture of DBMSs will not scale to such magni­
tudes. For example, current DBMSs build a new index on a 
relation by locking it, building the index and then releasing 
the lock. Building an index for a 1-terabyte table may require 
several days of computing. Hence, it is imperative that algo­
rithms be designed to construct indexes incrementally with­
out making the table being indexed inaccessible. 

Similarly, making a dump on tape of a 1-terabyte database 
will take days, and obviously must be done incrementally, 
without taking the database off line. In the event that a data­
base is corrupted because of a head crash on a disk or for 
some other reason, the traditional algorithm is to restore the 
most recent dump from tape and then to roll the database for­
ward to the present time using the database log. However, 
reading a 1-terabyte dump will take days, leading to unac­
ceptably long recovery times. Hence, a new approach to 
backup and recovery in very large databases must be found. 

Parallelism 

Ad-hoc queries over the large databases contemplated by 
next-generation application designers will take a long time 
to process. A scan of a 1-terabyte table may take days, and 
it is clearly unreasonable for a user to have to submit a query 
on Monday morning and then go home until Thursday when 
his answer will appear. 

First, imagine a 1-terabyte database stored on a collection of 
disks, with a large number of CPUs available. The goal is to 
process a user's query with nearly linear speedup. That is, 
the query is processed in time inversely proportional to the 
number of processors and disks allocated. To obtain linear 
speedup, the DBMS architecture must avoid bottlenecks, and 
the storage system must ensure that relevant data is spread 
over all disk drives. Moreover, parallelizing a user command 
will allow it to be executed faster, but it will also use a larger 
fraction of the available computing resources, thereby penal­
izing the response time of other concurrent users, and possi­
bly causing the system to thrash, as many queries compete 
for limited resources. Research on multiuser aspects of paral­
lelism such as this one is in its infancy. 

On the other hand, if the table in question is resident on an 
archive, a different form of parallelism may be required. If 
there are no indexes to speed the search, a sequential scan 
may be necessary, in which case the DBMS should evaluate 
as many queries as possible in parallel, while performing a 
single scan of the data. 

14 Al COMPUTING 

In general, it remains a challenge to develop a realistic theory 
for data movement throughout the member hierarchy of par­
allel computers. The challenges posed by next-generation da­
tabase systems will force computer scientists to confront 
these issues. 

Tertiary Storage and 
Long-Duration Transactions 

For the foreseeable future, ultra large databases will require 
both secondary ( disk) storage and the integration of an ar­
chive or tertiary store into the DBMS. All current commercial 
DBMSs require data to be either disk or main-memory resi­
dent. Future systems will have to deal with the more complex 
issue of optimizing queries when a portion of the data to be 
accessed is in an archive. Current archive devices have a very 
long latency period. Hence, query optimizers must choose 
strategies that avoid frequent movement of data between stor­
age media. Moreover, the DBMS must also optimize the 
placement of data records on the archive to minimize subse­
quent retrieval times. Finally, in such a system, disk storage 
can be used as a read or write cache for archive objects. New 
algorithms will be needed to manage intelligently the buff­
ering in a three-level system. 

The next-generation applications often aim to facilitate col­
laborative and interactive access to a database. The tradi­
tional transaction model discussed earlier assumes that trans­
actions are short-perhaps a fraction of a s~ond. However, 
a designer may lock a file for a day, during which it is rede­
signed. We need entirely new approaches to maintaining the 
integrity of data, sharing data, and recovering data, when 
transactions can take hours or days. 

Versions and Configurations 

Some next-generation applications need versions of objects 
to represent alternative or successive states of a single con­
ceptual entity. For instance, in a facilities engineering data­
base, numerous revisions of the electric plans will occur dur­
ing the design, construction and maintenance of the building, 
and it may be necessary to keep all the revisions for account­
ing or legal reasons. Furthermore, it is necessary to maintain 
consistent configurations, consisting of versions of related 
objects, such as the electrical plan, the heating plan, general 
and detailed architectural drawings. 

While there has been much discussion and many proposals 
for proper version and configuration models in different do­
mains, little has been implemented. Much remains to be done 

November 1993 



in the creation of space-efficient algorithms for version man­
agement and techniques for ensuring the consistency of con­
figurations. 

Heterogeneous, Distributed Databases 
There is now effectively one worldwide telephone system and 
one worldwide computer network. Visionaries in the field of 
computer networks speak of a single worldwide file system. 
Likewise, we should now begin to contemplate the existence 
of a single, worldwide database system from which users can 
obtain information on any topic covered by data made avail­
able by purveyors, and on which business can be transacted in 
a uniform way. While such an accomplishment is a generation 
away, we can and must begin now to develop the underlying 
technology in collaboration with other nations. 

Indeed, there are a number of applications that are now 
becoming feasible and that will help drive the technology 
needed for worldwide interconnection of information: 

·"'-
• Collaborative efforts are underway in many physical sci-

ence disciplines, entailing multiproject databases. The 
project has a database composed of portions assembled by 
each researcher, and a collaborative database results. The 
human genome project is one example of this phenomenon. 

• A typical defense contractor has a collection of subcontrac­
tors assisting with portions of the contractor project. The 
contractor wants to have a single project database that spans 
the portions of the project database administered by the 
contractor and each subcontractor. 

• An automobile company wishes to allow suppliers access 
to new car designs under consideration. In this way, suppli­
ers can give early feedback on the cost of components. Such 
feedback will allow the most cost-effective car to be de­
signed and manufactured. However, this goal requires a 
database that spans multiple organizations, that is, an inter­
company database. 

These examples all concern the necessity of logically inte­
grating databases from multiple organizations, often across 
company boundaries, into what appears to be a single data­
base. The databases involved are heterogeneous, in the sense 
that they do not normally share a complete set of common 
assumptions about the information with which they deal, and 
they are distributed, meaning that individual databases are 
under local control and are connected by relatively low-band­
width links. The problem of making heterogeneous, distrib­
uted databases behave as if they formed part of a single data­
base is often called interoperability. We now use two very 
simple examples to illustrate the problems that arise in this 
environment: 

November 1993 

First, consider a science program manager, who wishes to 
find the total number of computer science Ph.D. students in 
the U.S. There are over 100 institutions that grant a Ph.D. 
degree in computer science. We believe that all have an on­
line student database that allows queries to be asked of its 
contents. Moreover, the NSF [National Science Foundation] 
program manager can, in theory, discover how to access all 
of these databases and then ask the correct local query at each 
site. 

Unfortunately, the sum of the responses to these 100+ local 
queries will not necessarily be the answer to his overall 
query. Some institutions record only full-time students; oth­
ers record full- and part-time students. Furthermore, some 
distinguish Ph.D. from Masters candidates, and some do 
not. Some may erroneously omit certain classes of students, 
such as foreign students. Some may mistakenly include 
students, such as electrical engineering candidates in an 
EECS department. The basic problem is that these 11 + 
databases are semantically inconsistent. 

A se~ond problem is equally illustrative. Consider the possi­
bility of an electronic version of a travel assistant, such 
as the Michelin Guide. Most people traveling on vacation 
consult two or more such travel guides, which list prices 
and quality ratings for restaurants and hotels. Obviously, 
one might want to ask the price of a room at a specific hotel, 
and each guide is likely to give a different answer. One 
might quote last year's price, while another might indicate 
the price with tax, and a third might quote the price including 
meals. To answer the user's query, it is necessary to treat 
each value obtained as evidence, and then to provide fusion 
of this evidence to form a best answer to the user's query. 

To properly support heterogeneous, distributed databases, 
there is a difficult research agenda that must be accomplished. 

Browsing 

Let us suppose that the problems of access have been solved 
in any one of the scenarios mentioned earlier. The user has 
a uniform query language that can be applied to any one of 
the individual databases or to some merged view of the col­
lection of databases. If an inconsistency is detected, or if 
missing information appears to invalidate a query, we cannot 
simply give up. There must be some system for explaining 
to the user how the data arrived in that state and, in particular, 
from what databases it was derived. With this information, 
it may be possible to filter out the offending data elements 
and still arrive at a meaningful query. Without it, it is highly 
unlikely that any automatic agent could do a trustworthy job. 
Thus, we need to support browsing, the ability to interrogate 

a COMPUTING 15 



the structure of the database and, when multiple databases 
are combined, interrogate the nature of the process that 
merges data. 

Incompleteness and Inconsistency 

The Ph.D. student and travel advisor examples indicate the 
problems with semantic inconsistency and with data fusion. 
In the Ph.D. student example there are 100+ disparate data­
bases, each containing student information. Since the indi­
vidual participant databases were never designed with the ob­
jective of i11teroperating with other databases, there is no 
single global schema to which all individual databases con­
form. Rather, there are individual differences that must be 
addressed. These include differences in units. For example, 
one database might give starting salaries for graduates in dol­
lars per month while another records annual salaries. In this 
case, it is possible to apply a conversion to obtain composite 
consistent answers. More seriously, the definition of a part­
time student may be different in the different databases. This 
difference will result in composite answers that are semanti­
cally inconsistent. Worse still is the case in which the local 
database omits information, such as data on foreign students, 
and is therefore simply wrong. 

Future interoperability of databases will require dramatic 
progress to be made on these semantic issues. We must ex­
tend substantially the data model that is used by a DBMS to 
include much more semantic information about the meaning 
of the data in each database. Research on extended data mod­
els is required to discover the form that this information 
should take. 

Mediators 
As the problems of fusion and semantic inconsistency are so 
severe, there is need for a class of information sources that 
stand between the user and the heterogeneous databases. For 
example, if there were sufficient demand, it would make 
sense to create a "CS Ph.D. mediator" that could be queried 
as if it were a consistent, unified database containing the in­
formation that actually sits in the 100+ local databases of the 
CS departments. A travel adviser that provided the informa­
tion obtained by fusing the various databases of travel guides, 
hotels, car-rental companies, and so on, could be commer­
cially viable. Perhaps most valuable of all would be a media­
tor that provided the information available in the world's li­
braries, or at least that portion of the libraries that are stored 
electronically. 

MUMPS Office Automation and TOOLS 
Data Methods Packages feature easy integration with one another and with your MUMPS ape_lications. 
Immediate links to major packages are also provided including FileMan, MailMan, Kernel and others. 

WORD MANAGER TM 

FORMS MANAGER TM 

SCRIPT MANAGER TM 

CALC MANAGER TM 

REPORT GENIE TM 

GRAPH MANAGER ™ 

VIEW MANAGER TM 

MEDICAL DICTIONARY 

A full-featured word processor with spelling, powerful formatting and numerous 
features for all types of documents. 

A complete forms design, data entry, editing and prlntlng package. A front-end 
to applications packages inclucling F11eMan. 

A total medical transcrtption solution featuring glossartes, medical dictionary, 
and sophisticated management functions. 

A complete spread-sheet package with all the features and functions of popular 
PC based packages. 

A flexible, powerful and easy-to-use report generator with three different interfaces 
to flt every users needs. 

Business and scientific graphical package supporting many prlnters and plotters. 

Tilis package features: Online free-text search.view and prlnt functions, with an intuitive 
interface combined with powerful features. 

A complete medical dictionary - compatible with our software or yours. 

PROGRAMMERS AND RESELLERS Data Methods products are also available as functional modules for programmers 
and in quanities for resellers. Special license arrangements and complete technical support provide an easy low-cost 
path to full integration with your MUMPS software. ' 

Data Methods 
Data Methods Incorporated 
63 North Broadway 
Nyack, NewYork 10960-2636 
(914) 353-2000 
(914) 358-6456 FAX 



Mediators must be accessible by people who have not had a 
chance to study the details of their query language and data 
model. Thus, some agreement regarding language and model 
standards is essential, and we need to do extensive experi­
ments before standardization can be addressed. Self-descrip­
tion of data is another important research problem that must 
be addressed if access to unf arniliar data is to become a reality. 

Name Services 

The NSF program manager must be able to consult a national 
name service to discover the location and name of the data­
bases or mediators of interest. Similarly, a scientist working 
in an interdisciplinary problem domain must be able to dis­
cover the existence of relevant data sets collected in other 
disciplines. The mechanism by which items enter and leave 
such name servers and the organization of such systems is an 
open issue. 

Security "'I. 

Security is a major problem (failing) in current DBMSs. Het­
erogeneity and distribution make this open problem even 
more difficult. A corporation may want to make parts of its 
database accessible to certain parties, as did the automobile 
company mentioned earlier, which offered preliminary de­
sign information to potential suppliers. However, the auto­
mobile company certainly does not want the same designs 
accessed by its competitors, and it does not want any outsider 
accessing its salary data. 

Authentication is the reliable identification of subjects mak­
ing database access. A heterogeneous, distributed database 
system will need to cope with a world of multiple authentica­
tors of variable trustworthiness. Database systems must be 
resistant to compromise by remote systems masquerading as 
authorized users. We foresee a need for mandatory security 
and research into the analysis of covert channels, in order that 
distributed, heterogeneous database systems do not increase 
user uncertainty about the security and integrity of one's data. 

A widely distributed system may have thousands or millions 
ofusers. Moreover, a given user may be identified differently 
on different systems. Further, access permission might be 
based on role (e.g. , current company Treasurer) or access 
site. Finally, sites can act as intermediate agents for users, 
and data may pass through and be manipulated by these inter­
vening sites. Whether an access is permitted may well be in­
fluenced by who is acting on a user's behalf. Current authori­
zation systems will surely require substantial extensions to 
deal with these problems. 

November 1993 

Site Scale-up 

The security issue is just one element of scale-up, which must 
be addressed in a large distributed DBMS. Current distrib­
uted DBMS algorithms for query processing, concurrency 
control, and support of multiple copies were designed to 
function with a few sites, and they must all be rethought for 
1,000 or 10,000 sites. For example, some query-processing 
algorithms expect to find the location of an object by search­
ing all sites for it. This approach is clearly impossible in a 
large network. Other algorithms expect all sites in the net­
work to be operational, and clearly in a 10,000 site network, 
several sites will be down at any given time. Finally, certain 
query-processing algorithms expect to optimize a join by 
considering all possible sites and choosing the one with the 
cheapest overall cost. With a very large number of sites, a 
query optimizer that loops overall sites in this fashion is likely 
to spend more time trying to optimize the query than it would 
have spent in simply executing the query in a naive and ex­
pensive way. 

Powerful desktop computers, cheap and frequently underuti­
lized, must be factored into the query optimization space, as 
using them will frequently be the most responsive and least 
expensive way to execute a query. Ensuring good user re­
sponse time becomes increasingly difficult as the number of 
sites and the distances between them increase. Local caching, 
and even local replication, of remote data at the desktop will 
become increasingly important. Efficient cache maintenance 
is an open problem. 

Transaction Management 

Transaction management in a heterogeneous, distributed da­
tabase system is a difficult issue. The main problem is that 
each of the local database management systems may be using 
a different type of a concurrency control scheme. Integrating 
these is a challenging problem, made worse if we wish to 
preserve the local autonomy of each of the local databases 
and allow local and global transactions to execute in parallel. 

One simple solution is to restrict global transactions to re­
trieve-only access. However, the issue of reliable transaction 
management in the general case, where global and local trans­
actions are allowed to both read and write data, is still open. 

Conclusion 

Database management systems are now used in almost every 
computing environment to organize, create and maintain im­
portant collections of information. The technology that 
makes these systems possible is the direct result of a success­
ful program of database research. We have highlighted some 

M COMPUTING 17 



important achievements of the database research community 
over the past two decades, focusing on the major accomplish­
ments of relational databases, transaction management,. and 
distributed databases. 

We have argued that next-generation database applications 
will little resemble current business data processing data­
bases. They will have much larger data sets, require new 
capabilities such as type extensions, multimedia support, 
complex objects, rule processing, and archival storage, and 
they will entail rethinking algorithms for almost all DBMS 
operations. In addition, the cooperation between different or­
ganizations on common problems will require heteroge­
neous, distributed databases. Such databases bring very dif­
ficult problems in the areas of querying semantically 
inconsistent databases, security, and scale-up of distributed 
DBMS technology to large numbers of sites. Thus, database 
systems research offers 

• A host of new intellectual challenges for computer scien­
tists, and 

• Resulting technology that will enable a broad spectrum of 
new applications in business, science, medicine, defense, 
and other areas. · 

To date, the database industry has shown remarkable success 
in transforming scientific ideas into major products, and it is 
crucial that advanced research be encouraged as the database 
community tackles the challenges ahead. M 

Acknowledgments 
Any opinions, findings, conclusions, or recommendations 
expressed in this report are those of the panel and do not nec­
essarily reflect the views of the National Science Foundation. 
Avi Silbershatz and Jeff Ullman initiated the workshop and 
coordinated and edited the report. Mike Stonebraker pro­
vided the initial draft and much of the content for the final 
report. Hewlett-Packard Laboratories hosted the workshop. 
Postworkshop contributors to this report include Phil Bern­
stein, Won Kim, Hank Korth, and Andre van Tilborg. 

The workshop was supported by NSF Grant IRI-89-19556. 

Endnote 
1. The workshop was attended by Michael Brodie, Peter Buneman, 
Mike Carey, Ashok Chandra, Hector Garcia-Molina, Jim Gray, Ron 
Fagin, Dave Lomet, Dave Maier, Marie Ann Niemat, A vi Silberschatz, 
Michael Stonebraker, Irv Traiger, Jeff Ullman, Gio Wiederhold, Carlo 
Zaniolo, and Maria Zemankova. 

The First Step to Making a Sale". • • 

Are you selling hardware, applications or tools? 
Are you a Consultant looking to expand your customer base? 

You make contact with the greatest number of 
M professionals in one place, at one time, at the -

M Technology Association 
23rd Annual Meeting and Exhibit 
Reno, Nevada. June 13-17, 1994 

23rd 
ANNUAL 
MEETING 

WINDOWSoF 

OPPORTUNITY 

18 M COMPUTING 

Make that critical first contact to lead you to 
new customers and a greater market share. 

Call MT A for exhibit space availability - 301-431-4070 
SPECIAL Discounts for Consultants ! 

• • • Is Making Contact! 
November 1993 


