
DATABASE
MANAGEMENT

The Relevance of SQL to
M Technology in 1993

by Keith Stendall

Abstract
With the growing number of SQL-based products becoming
available to the M community, and bearing in mind the re
cently completed standards for embedding SQL (structured
query language) statements in M programs, it is increasingly
relevant for users to understand how to use SQL in relation
to their currenrand future applications.

This article presents a personal viewpoint based upon experience
of SQL-based products both inside and outside the world of M
Technology. This viewpoint categorizes the use of SQL-based
products into four distinct areas of application for SQL as:

• A commonly recognized interactive query interface;

• A standard method of passing queries into and out of an M
environment;

• An embedded part of the M language; and

• A formal sublanguage of an RDBMS environment.

The article attempts to address the issues of why SQL-based
products could be useful within these four categories but is
not a formal review of specific products that are currently
available.

Introduction
Awareness of SQL is reasonably high among M application
developers. Some now use an SQL implementation regu
larly. Most think they understand what it is and what it does,
although in my experience there are misconceptions with re
spect to its applicability to M Technology.

Most users of M applications do not understand SQL at all.
Some are frightened by it. Many have no interest in it and do
not see its relevance to their environment. Outside the world
of M Technology there is a much greater awareness of SQL.
SQL features prominently in all the major relational database
management systems (RDBMS) such as ORACLE,
INGRES, SYBASE, and others.

November 1993

SQL is a data sublanguage invented by a group from IBM Re
search in 1972. SQL was originally based upon some of the early
work done by E.F. Codd on the Relational Model. SQL is not
the only data sublanguage that has been developed for RDBMS,
but it is the only one that has been adopted as an ANSI (American
National Standards Institute) and an ISO/IEC (International Or
ganization for Standardization/International Electrotechnical
Commission) international standard.

A myth surrounding SQL suggests that it is only applicable
to relational databases. This is not true. In fact, the word rela
tional does not appear on any of the 120 pages in the ISO/
IEC standard. [1] The standard is concerned with the syntax
and semantics of SQL. This is defined in terms of tables of
data. The terms relation and table are not synonymous. [2]
SQL may be applied to any database that has its data concep
tually organized as logical tables. The standard for SQL in
fact relates to two database languages:

• "A schema definition language (SQL-DDL) for declaring
the structure and integrity constraints of an SQL database."

• "A module language and a data manipulation language (SQL
DML) for declaring the database procedures and executable
statements of a specific database application program."

"The standard defines the logical data structures and basic
operations for an SQL database. It provides functional capa
bilities for designing, accessing, maintaining, controlling
and protecting the database."

The schema definition part of the language (SQL-DDL) is
often not implemented directly by vendors. The preferred
route is to precede SQL by some form of data dictionary or
data modelling interface that is more user friendly. For this
reason users often regard the data manipulation part of the
language (SQL-DML) as synonymous with SQL.

It is worth picking up on the terms database language, as
used in the standard, and data sublanguage, as referred to by
Codd, and highlighting that both these terms are meant to
identify that SQL is not a complete language such as COBOL,
FORTRAN, BASIC, or M. [3] It is not possible to use SQL
alone to write complete applications. SQL is concerned only
with data definition and manipulation-updating and retrieving

Continued on page 34

Al COMPUTING 31

data from a database. To handle a complete application, SQL
must work in partnership with other languages, tools, and serv
ices. It is therefore a very natural step to consider how SQLcould
work in partnership with the M environment.

There are many ways to implement SQL in an M Technology
environment. I will not attempt a complete technical discus
sion of any sort of model for interfacing Mand SQL specifi
cally. Work has already been done in this area and I would
refer the reader to a good article in the proceedings of the
1990 MUMPS Users' Group-North America (MUG-NA)
meeting in Orlando, Florida. [4]

As a preliminary step to discussing the relevance of SQL in
operational terms, it is practical to address a primary issue.
That is, can SQL work with an existing M database?

Can SQL Work with an Existing
M Database?
An M database (held as a collection of globals) can be defined
as a set of linked tables of data. Thus, SQL implementations
may operate on an M database. It is not true to say, however,
that all existing M databases can be defined as a set of tables
(nor as the much tighter constraint of relational tables).

The problem is that M offers almost total flexibility in the
way it holds data in records within globals. Occurrences of
multiple repeating fields and context-dependent fields are not
uncommon in existing M databases. These constructs are at
best, difficult, and at worst, impossible, to express as tables.
For a good indication of how simple M global structures can
be mapped as tables, I would refer the reader to an article
in the proceedings of the 1991 MUG-NA meeting in New
Orleans, Louisiana. [5] The only way to ensure that the total
ity of an M database can be expressed as tables is to constrain
the flexibility offered by M when creating new data struc
tures. Data dictionary-based 4GL M tools and database man
agement systems have been available now for several years.

These have started the process of constraining the native
flexibility of M and have imposed some control and order on
the global structures created within an M database. Many of
these were not designed with the aim of allowing the resulting
database to be manipulated as linked tables. The U.S. De
partment of Veterans Affairs' FileMan is an example of a
very good database management system that imposes order
and data integrity upon the M database without being based
upon tables (orrelational theory). Even so, the resultant data
base largely can be mapped as linked tables and an SQL im
plementation can be applied. An excellent comparison be
tween the FileMan approach and the relational approach is
given in the proceedings of the 1991 MUG-NA meeting. [6]

34 Al COMPUTING

There are at least eight (complete or partial) implementations of
SQL available to the M community that can operate on an ex
isting M database. In the interests of fairness I will not list them
since there are bound to be some that I do not know about. It is
certain that more SQL implementations will soon be available.
I have used several of these implementations to varying degrees,
as well as having had some limited exposure to SQL implemen
tations outside the world of M Technology. Most SQL imple
mentations for M claim to conform to the ANSI and ISO/IEC
standard. [7] Some of these are indeed faithful to the standard.
I believe a few are questionable in some respect. Certainly, all
implementations I have seen include extensions to the standard.
The result is that no two implementations are the same although
all are derived from a common base.

All the SQL implementations for M that I have seen do a
fairly good job of mapping existing M globals for the purpose
of data retrieval. To gain the full benefits that accrue from
using SQL to control M database updates, however, it is al
most inevitable that some of the existing globals will have to
be restructured. Some of these benefits will become apparent
in the following discussions.

It would be impossible to present a comprehensive view of
SQL's expressive power within the scope of this paper. For this
reason, I refer the reader to an excellent text on DB2, which
gives a broad view of the mechanics of SQL and a valid point
of reference from outside the world of M Technology. [8]

\;.:

SQL as a Commonly Recognized
Interactive Query Inter£ ace
When the requirement is simply to retrieve information from
an existing M database, quite a few organizations are now
adding an SQL interface as the basis of an ad hoc query facil
ity. The idea is to open up the database to users who would
not normally be able to work at M code level. The targeted
users include nontechnical staff and people who do not work
with M Technology at all. Remember that in many organiza
tions non-M applications built within a 4GL environment are
the norm. Addition of an SQL interface to the M database
often has great appeal to such organizations.

Even with an SQL interface, users still need to know how the
database is structured. SQL will present the data as named
tables. Each table will contain named columns of data. These
tables may have been set up by using SQL-DDL or more com
monly by making entries in a data dictionary. Sometimes ta
bles are automatically created by using existing dictionary
structures. Whichever approach is used, it is common to find
that an M database "explodes" into a very large number of
tables. This is unavoidable and is not dependent upon the

November 1993

SQL implementation selected. The resulting SQL data dic
tionary is usually supplied with some facility for browsing
through the entries. The user forms a list of table names and
column names that represent the data he or she is interested
in. If data are required from more than one table then the user
also has to say how the tables are to be linked. With relational

PATIENT
PAT9"UM PAT-NAME PAT..SEX PAT-RELIGION

123 ABLE,A M CAT

234 BAKER,B M MET

345 CHARLES,C F CAT

456 DAKIN,D M MET

567 EARL,E F ATH

The best SQL implementations now available tend to provide
a user-friendly front end to the SQL-DML scripting lan
guage. The user is guided through a process that results in
the SQL code being generated automatically. Hence there is
no particular need to learn the SQL syntax or (in some cases)
how to join tables correctly .

RELIGION

REL-CODE REL-NAME

ATH ATHEIST

CAT CATHOLIC

MET METHODIST

QUERY: j Show patient name, ux and rollglon name for all malea.
SELECT PATIENT.PAT-NAME,PATIENT.PAT-sEX,RELIGION.REL-NAME

FROM PATIENT,RELIGION

-COLUMNS

-TABLES

WHERE (PATIENT.PAT-RELIGION • RELIGION.REL~DE) -JOIN

AND {PATIENT.PAT-SEX• 'M') -LIMITS

RESULT OF QUERY
. ".'\ PAT•NAME PAT-SEX REL-NAME

ABLE,A M CATHOLIC

BAKER,B M METHODIST

DAKIN,D M METHODIST

Figure 1. A simple join operation.

implementations of SQL this means specifying a join opera
tion. There are many different kinds of join, the most com
mon being the natural join-a join based on the values held
in two columns being equal. Figure 1 gives an indication of
how a simple query, based on two tables, might work.

This example is simple and quite easy for an end user to un
derstand. In practice, useful queries often involve joins of
five, six, or more tables. This can be tedious and prone to
errors. It is not unusual to see ten or twelve lines of SQ L code
in an average query. Although the number of joins required
can be minimized by making use of prepared views of the
database, they can never be eliminated entirely.

Having extracted our data using SQL, we would normally
like to put it into a reasonable layout on a report. Here we hit
a problem. The SQL standard does not include any facilities
for specifying the position or format of data on a report. [9]

Individual vendors usually solve this problem in one of two
ways: by specific extensions to the SQL syntax, or by passing
the SQL query result to a purpose-built formatter. Either
way, when it comes to laying out report structures the solu
tion is always likely to be a proprietary one.

November 1993

If the SQL code is now going to be translated into the equiva
lent M code (as most current implementations do), then why
should we bother with the SQL code at all? This question is
largely answered in the discussion which follows, but if the
sole requirement is to perform local queries and reports on
an existing M database, then many good alternatives to SQL
are available.

Passing Queries into and out of an
M Environment
Here we examine a much broader set of requirements,
whereby an M application needs to retrieve information
from non-M application environments such as ORACLE,
INGRES, and SYBASE.

Also, these non-M applications may need to retrieve informa
tion from an M database. It has been possible for some time
now to extract data from an M database and download it into
a non-M environment such as a spreadsheet or a graphics
package. There are many products around that do this. They
take advantage of standard protocols that have been estab
lished for the import and export of data (e.g. , Data Inter-

Al COMPUTING 35

change Format). This type of process is largely initiated from
the M environment, however, and is not coordinated in any
interactive way.

What if I know that an ORACLE database contains information
about patient admissions and my M application needs details for
those patients admitted yesterday? What if I know that an M
database contains information about suppliers of motor vehicles
and my INGRES application needs to know the current price
and delivery details for all Ford pickup trucks?

Solutions to this type of requirement are only just starting to
appear. The vast majority of these solutions are based on the
idea of passing SQL script from one application environment
to another. This type of process is categorized by the term
client/ server. One environment acts as a client and issues a
request in the form of an SQL query. The other environment
acts as a database server (potentially to many clients) and
passes back the result of the query as a table of data. Figure
2 shows a simplistic view of this mechanism with an M envi
ronment acting as a server to a non-M environment.

II

ENVIRONMENT

BERVER
API

IQLlorlpt

T■bloo

CLIENT
API ENVIRONMENT

Figure 2. An example of the client/server process.

API stands for application program interface. This is the
mechanism that manages the protocol needed to pass SQL
script and tables between different environments using vari
ous channels of communication. To make this process work
reliably in the general case, an accepted standard protocol is
needed, preferably one that is controlled by some indepen
dent body such as ANSI or ISO. Unfortunately there is no
such standard and one is not likely to emerge for some time.
There are plenty of proprietary solutions and some of these
are being adopted as pseudo-standards for the industry. As
one would expect, the major RDBMS implementors are lead
ing the way. M product vendors are very active in this area
and some prototypes are available for client/server links to
specific non-M environments.

It could be quite a while before a generic client/server link is
available. Indeed, some of the major RDBMS vendors are reti
cent in their approach to cooperating fully with other environ-

36 .M COMPUTING

ments. I do not believe that this is an attitude that will prevail in
the face of commercial pressure. Client/server is clearly an issue
that will affect the whole of the M Technology community.

As solutions become commercially available, users will need
to evaluate them carefully. A good implementation of SQL
that is faithful to the standard is a "must."[10] Any extensions
made by a vendor to SQL are very unlikely to be applicable
across a client/server link. Along with the SQL implementa
tion the user will need an API for both the client and the server
ends. These will most likely be sold as add-on products.

SQL as an Embedded Part of the
M Language
The ISO/IEC standard includes annexesthat explain the syn
tax and structure for embedding SQL into various host lan
guages such as COBOL, FORTRAN, PASCAL. [11] In fact,
with the recent publication of the new SQL2 standard, M may
now be added to this list. (The SQL2 standard was not pub
lished at the time this paper was first presented in 1992.)

Indeed, implementations of M with embedded SQL already
exist and are in use. So, what are the advantages ofusing SQL
in this way? This article commented earlier on the almost total
flexibility in the way M can be used to hold data. Historically
this has been seen as one of the biggest strengths ofM. More
recently it has become apparent that this flexibility causes
problems if it is not controlled properl)\.-c

Using SQL within M to handle all data manipulation has a
number of immediate benefits. It:

• Reduces the scope and diversity of the file structures that
may be maintained;

• Isolates the data handling from the functionality of an M
application and separates the logical access path from the
physical access path;

• Can offer a guarantee of referential integrity; and

• Can make the application easier to document, easier to
understand, and thus much easier to maintain.

The guarantee of referential integrity is an important feature
that warrants further explanation. Briefly, this means that a
data attribute found in many files is guaranteed to be main
tained in a consistent, integral way. For example, if an attri
bute-such as a patient identifier-is present in nine or ten
separate files that are linked together, a change to a specific
patient identifier in one of these files automatically would
produce appropriate changes to all the other files.

November 1993

Having acknowledged these benefits in relation to SQL, it is
only fair to say that the same benefits can also be obtained
without the use of SQL. Consider VA FileMan. Surely, all
the same benefits apply. Indeed, there are other M 4GL tools
available that also give some or all of these benefits.

The solution offered by such M 4GL tools is to precede the
M language by a programmer interface capable of generating
the M code needed for file handling. In some respects it could
be said that using embedded SQL directly at the M code level
is rather a retrograde step!

SQL as a Formal Sublanguage of an
RDBMS Environment
This final topic involves some gazing into a crystal ball. Fig
ure 3 illustrates how I would envisage SQL fitting into the M
environment of the future.

MEHVIRONMENT

o-..c:r DIIIQN INIUF&ea

PORIIGN --- -.,._MN ~ ~
/

8QL IIMIIONIIBff
7 MCOIIE API

/
API

T-/

Figure 3. SQL with Min the future.

Applications would be designed using some form of object de
sign interface. This is effectively a set of front-end tools, which
themselves are modelled in a data dictionary and may be modi
fied to cater to individual organizational requirements.

The object design interface will be capable of defining a spe
cific process in terms of a formal specification combined with
operations on the database expressed in terms of SQL.

The SQL can be translated into M code along with the formal
process definition to produce a run-time M code module that
can either operate exclusively on the local M database or pass
SQL script via a client/server mechanism to a separate environ
ment where the query is run. The remote query will yield either
a database update within that environment or the retrieval of a
table of data that will be passed back to the M environment.

This scheme would enable realization of the full benefits of both
M and SQL. The layering of SQL on top of M is· important
to allow full flexibility of access to both M and other database
environments without disturbance to the formal specification.

Continued on page 38

November 1993

MIIS™

POLVLOGICS

MUMPS

We turn running MIIS programs into running
MUMPS programs. Efficiently, with maximum
accuracy and minimum down-time!.

MIIS in, MUMPS out. That's all there is to it.

We specialize in MUMPS language conver
sions. We also convert MAXI MUMPS, old
MIIS, BASIC and almost anything else into
standard MUMPS. Polylogics will be there with
experienced project management, training
and documentation.

So, give us a call today. Ask for a free demon
stration on a few of your programs. That's all
there is to it.

POLYLOGICS CONSULTING
136 Essex Street
Hackensack, New Jersey 07601

Phone (201) 489-4200
Fax (201) 489-4340

MIIS is a trademark of Medical Information Technology. Inc.

L

na ot:PC,
Any GUI.

.I
Our smart design lets you work in X Windows OSF/Motif and
Microsoft Windows without modifying your M code or giving

up your character-based terminals, for a truly long-term,
cost-effective windowing solution.

Extensive productivity features free programmers to concentrate
on what they do best - develop superb applications.

Proven, Over and Over.
Used by more major software houses

than any other M windowing tool.

CyberTools, Inc.
1501 Main Street, Suite 51
Tewksbury, MA 01876 U.S.A.
Inquiries: 508 858 3875
Fax: 508 858 0174

Both the formal process definition and the data manipulation,
expressed as SQL script, benefit from the portability and
power of the facilities available at the M code level.

The object design interface is the essential mechanism that
allows process and data definition to be brought back together
into classes of reusable object components. In this "total solu
tion," SQL is used primarily for its two key properties:

• A formal definition of how to handle a database without
loss of generality or integrity; and

• A formal standardized syntax for use in multiple heteroge-
neous database environments.

In defining what I see as the future position of SQL in relation
to M, it is apparent that I am also describing a view of M as the
underlying support for higher layers of interface. I am putting
forward my belief that applications will not be built directly at the
M code level. In fact, M ends up almost as part of the operating
system environment. The higher-level tools are written in M
code and are used to produce applications that are also written
in M. There is no distinction between tools and applications here.
A tool is just a specialized form of application for use by applica
tion builders. The software environment is essentially seamless.
The smallest and largest applications and the most complex of
tools are all part of a continuum that is infinitely extensible. Fur
thermore, as standards evolve for the exchange of designs (as

38 M COMPUTING

expressed by formal specifications), applications can be trans
ferred totally between environments to be regenerated in some
other source language.

This may present a somewhat different view of the ultimate
use of SQL and M than you had expected.Mas a language
disappears from view, but so do FORTRAN, COBOL, etc.

This is not to say that the role of M will be diminished in any
way. In fact, the reverse is true. A lot of important software
technology will be built upon the foundation stone of M and
will be entirely dependent upon it. Isaac Newton is said to
have remarked that insofar as he had achieved anything
worthwhile, he had done so by standing on the shoulders of
giants. I believe that M has very broad shoulders!

The views set forth here may be science fiction to many read
ers. In fact, most of the mechanisms described here are cur
rently available or under development today. No single prod
uct as yet brings all the facilities together· as a complete
environment, but that point is rapidly approaching. M

Keith Stendall is managing director at Coltec Systems Limited in Lich
fieid, England. This article is based on a paper presented by the author
at the 1992 MUG-Europe meeting in Vienna, Austria. The original pre
sentation was published in the proceedings of that meeting.

Endnotes
1. "Information Processing Systems Database f:anguage SQL with In
tegrity Enhancement," International Standard /SOI/EC 9075 and
ANSI Standard X3 .135.
2. E.F. Codd, The Relational Model for Database Management, Ver
sion 2 (Reading, Massachusetts: Addison-Wesley Press, 1990), 17-20.
3. "Information Processing Systems," ISO.
4. E.J. McIntosh, "A Model for Interfacing MUMPS and SQL," MUG
Quarterly 20:3 (June 1990): 14-20.
5. D.W. Middleton, "Query Optimisation in MUMPS," MUG Quar
terly 21:3 (June 1991): 32-39.
6. T.K. Winn and M.L. Hoye, "Relational Features of VA FileMan,"
MUG Quarterly 21:3 (June 1991): 46-51.
7. "Information Processing Systems," ISO.
8. C.J. Date and C.J. White, A Guide to DB2, Third Edition (Reading,
Massachusetts: Addison-Wesley Press, 1990).
9. "Information Processing Systems," ISO.
10. Ibid.
H. Ibid.

.~~~~~~y:~.t~itipu. rig .. ·~
.• · iiN'."~~g~~µ~it for.!3xperts
:: .; :J,\i·~i~:: r.

· ····• ·•··•·;:Jst~1m.i~~tf~jfg/~rtij0f •••···· .. ·... · .·.· ... · .••
.·.4,'..1~~4l,lQoJat.teaching:'#itllandabout M!

November 1993

