
FOCUS ON
FILEMAN

Progratntning Hooks 101: Introduction

Much of VA File~an's suc­
cess as a database manage­
ment system grows out of its

embracing the M design philosophy
of opening doors rather than closing
them. Just as M does not protect you
from erasing your database, so it also
permits you to program structured or
not, functionally or logically, "spa­
ghetti" code or Object Oriented Pro­
gramming System (OOPS). Simi­
larly, rather than adopt a single
database model and enforce it, the
FileMan developers have tried to per­
mit the database designer to pick and
choose elements from any database
model as seems appropriate to solve
the problem at hand. The key to main­
taining this level of flexibility has al­
ways been the use of FileMan' s pro­
gramming hooks.

This is the first in a series of articles
that will examine the programming
hooks in FileMan. This article pres­
ents a list of these programming
hooks. Future articles will drill into
specific areas to examine how to use
each hook and what variables can be
relied upon within them. Broad and
detailed understanding of when and
how to use these hooks will distin­
guish novices from FileMan experts,
and will increase your programming
productivity.

What Is a
Programming Hook?
Although FileMan has a vast number
of features to build and use databases,
most of these features are not hooks.
For this series of articles, a program­
ming hook is defined as a significant

28 /I COMPUTING

by Rick Marshall

point in the sequence of events that
make up a standard database activity.
At each of these points, application
developers or database designers can
insert M code of their own.

Programming hooks let users weave
into the fabric of database activities
threads of their own to alter the flow
of FileMan's basic activities. Unlike
other features with strictly defined
capabilities, hooks have undefined
capabilities. They throw the doors
wide open to every capability of the M
programming language. Some hooks
should have a wide range of possible
features, while others must be ex­
tremely restricted. These articles will
spell out the qualities of each hook.

The Locations of Hooks
Here is a complete list of the program­
ming hooks in VA FileMan. In the
next article, we '11 begin to explore the
effective uses of these hooks.

Reader

Reader Input Transform:
$P(DIR(0),"/\",3,999)

Executable ?-Help:
$P (DIR(II?"). n/\n. 2. 999)

Executable ??-Help:
$P(DIR(11 ??"), 11 /\ 11 , 2,999)

Entry Execute Statement For Help
Frame

Exit Execute Statement For Help
Frame

Selection
Special Look-up:

/\DD(filenumber,0,"DIC")

Pre-Lookup Transform:
/\DD(filenumber, .01,7.5)

Selection Screen:
DIC(11 S11

) Parameter To DIC

File Screen:
/\DD(filenumber,0,"SCR")

MUMPS Identifier:
/\DD(filenumber,0,"ID", 11 WRITE11)

Selection Identifier:
DIC(11 W11

) Parameter To DIC

Selection Input Script:
DIC(11 DR11

) Parameter To DIC

Post-Action:
/\DD(filenumber,0, 11 ACT 11)

Input
Adding a Record

\;..c

LA YGO Input Script:
DIC(11 DR") Parameter To
FILE/\DICN

LA YGO Screen:
/\DD(filenumber, .01,"LAYG0",

#,0)

Editing a Field

Pointer/Set of Codes Screen:
/\DD(filenumber,fieldnumber,

12.1)
Input Transform:

$P(/\DD(filenumber,fieldnumber,
0). n/\n. 5. 999)

• Input Transform Prompt

• (Optional) Pattern Match (in X)
Prompt

Executable Help Prompt
M Cross-references
Trigger Cross-references
Bulletin Cross-references & Servers
Variable Pointer Screens:
• DIC("V")

November 1993

~
I

Editing a Record

Edit Field Prompt
Input Script:

DR Parameter To DIE
Input Template

Editing Every Word-Processing Field

Alternate Editor Activation Code
. OK To Run Test

Return To Calling Editor

Deleting a Field

Deletion Screen:
ADD(filenumber,fieldnumber,

"DEL",#,0)

Deleting a Record

Deletion Screen:
ADD(filenii'lnber,. 01, "DEL",#, O)

ScreenMan Input
Form Pre Action

Form Post Action

Page Pre Action

Page Post Action

Form Data Validation

Block Pre Action

Block Post Action

Field Pre Action

Field Post Action

Field Branching Logic

Field Executable Caption

Field Executable Default

Field Post Action On Change

Output
Displaying a Field

Output Transform Prompt

Displaying a List

DIC("S") Parameter To DQ
ADICQ

November 1993

Printing a Field

Word-Processing Field Windows

Searching

Search For Field Prompt
.Search Template

Sorting

Sort By Prompt
BY parameter To DIP
Sort Template

Before Printing

Header Prompt
DHD Parameter To DIP
DIOBEG Parameter To DIP

Printing Each Record

Print Field Prompt
DIS Array Parameter To DIP
FLDS Parameter To DIP
Print Template

After Printing Each Record

DHIT Parameter To DIP

After Printing

Trailer (Header Prompt)
DHD Parameter To DIP
DIOEND Parameter To DIP

Data Exporter

File Header
Date Format
File Trailer

Security

Field Audit Condition:
ADD(fiienumber,fieldnumber,"AX")

Installation

Environment Check Routine
Pre-Init After User Commit
Screen To Determine DD Update
Post-Initialization Routine

Version 20 Verified
VA FileMan version 20 was verified
July 9, 1993, and released this fall.
The key features include: file extract,
data export, cancel print jobs, faster
%RCR, and $NEXT elimination.

FileMan will create eoctract files based
on existing files. We expect this fea­
ture to be useful for creating online
archives. It will output data from File­
Man files to files in the underlying
operating system. Formats can be
defined and used, such as SASS,
Microsoft Word, and Lotus 1-2-3.
See Software $VIEW on page 50 for
additional information.

Users of Kernel will be able to pick
the TaskMan User option to ask their
queued jobs to stop running, but it is
the responsibility of the application to
determine whether they have been
asked to stop. FileMan' s queued print
jobs now check, and will stop if the
user asks them to. %XYA%RCR uses
$QUERY to vastly increase the speed of
array copying. Finally, $NEXT has
been removed from all VA FileMan
code. New data structures will be
created free of $NEXT. Applications
should convert their own executable
code in the database to use $ORDER in­
stead of $NEXT. ..

Forward your FileMan questions to the mail
group FILEMAN DEVELOPMENT
TEAM on the V A's FORUM system, or
write to: V AISC6-San Francisco, Suite 600,
301 Howard Street, San Francisco, CA
94105.

Rick Marshall works at the Seattle Develop­
ment Satellite office of the V A's San Fran­
cisco Information Systems Center. He is a
member of the FileMan development team,
teaches a VA Kernel class at the MT A an­
nual meetings, and is active within the
MDC.

M COMPUTING 29

