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Abstract. Statistical analysis generally entails two steps. First, a statis­
tic is computed from data. Second, the probability of the statistic is· 
determined, based on its known distribution. Computer or calculator 
programs often omit the probability computation, and the user must 
look up the value in a table. This paper exhibits MUMPS code for three 
of the most commonly used continuous distributions: x2 , Student's t, 
and the F distribution. The methods described may be used to aug­
ment existing MUMPS statistics programs, or they may be generalized 
to other probability distributions of interest. 

The Gamma Distribution 

The gamma probability distribution arises naturally from the Poisson, 
a discrete distribution. Suppose, for example, that the number of calls 
arriving at a telephone exchange during a time interval t has the Pdisson 
distribution: 

(El) (k) = ( ,\tl -At 
g k! e (k=0,1,2 ... ). 

We can invert the focus of interest from "number of calls" to "time," 
and ask what is the probability of waiting less than t minutes for n 
calls. This is equivalent to the probability of n or more calls arriving in 
t minutes. The distribution function for waiting time to the nth call is 
obtained by summing g(k) from k = n to oo: 

(E2) F(x) = f (,\:?k e-AX (x 2: 0). 
k=n 

Differentiating (E2) obtains the density function of the gamma distri­
bution with parameters (n - 1) and 1/,\: 

(E3) (x 2: 0). [1] 
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In (E3), r(n) is the gamma (factorial) function: 

(E4) r(z) = 10\z-le-tdt (Rz > 0) [2] 

Note that r( n + 1) = n! for non-negative integers n. 
The gamma function appears in several continuous distributions of 

interest including x2
, Student's t, and the F distribution. Therefore, 

it is useful to have a MUMPS extrinsic function that computes r(x), 
for real x > 0. Because r(x) grows rapidly, values in tables typically 
extend only to about r(lO0). MUMPS numeric precision limits practical 
computation to small arguments. In fact, r(16) exceeds 12-digits, the 
maximum length guaranteed by the language standard. However, the 
actual precision provided by implementations is usually greater than the 
standard requires. 

An extrinsic function for r( x) is included in Listing 1. [3] Briefly 
the method employs approximating polynomials for x ~ 2, and the 
recurrence relation r( x + 1) = xr( x) for x > 2 . 

....... 

Integration versus Approximation 

In a previous paper we exhibited a MUMPS extrinsic function for 
the trapezoidal rule, which yields satisfactory accuracy when computing 
the definite integral of selected probability density functions. [4] This 
approach can be used when approximating polynomials are not readily 
available. However, for some functions and domain values many itera­
tions are needed to obtain a reasonable degree of accuracy, resulting in 
a significant performance penalty. In general, non-iterative approxima­
tions are preferred, especially when computing multiple probabilities. 

Chi-Square 

Sums of squares of v independent random variables, each having the 
normal distribution with mean zero and unit variance have the x2 

( chi­
square) distribution with v degrees of freedom. This paper omits the 
density and distribution functions for x2

, which can be found in numer­
ous sources. 

A series expansion is used to compute the probability of x2 (see List­
ing 1 ). [5] Equation (E5) displays the series: 

(E5) 
-x2 /2 

2 ) ( 1 2)v/2 _e---:--;c--
P(x Iv = 2X rcvt2) 

( 

oo X2r. ) 

1+ ~ (v+2)(v+4) .. ·(v+2r) 
[2] 

/IA COMPUTING 91 



For large degrees of freedom an approximation to the normal distri­
bution is used: 
(E6) 

(X2/v)l/3 - (1- .l._) 
X _ 9v 
2- ~ (v > 30) [2] 

The approximation given in (E6) is accurate to about three decimal 
places, and is employed in the MUMPS implementation of P(x2 Iv) for 
the case v 2: 60. (5] 

Chi-Square Computational Example. The x2 statistic is commonly 
used with frequency data. In this context x2 is computed as follows: 

(E7) 

where O stands for observed, E for expected frequencies, and n for 
the number of classes. The MUMPS routine - AGGSC, included with the 
sources accompanying this paper, computes x2 for one-way and multi.,. 
way frequency tables. 

Suppose an experiment is conducted using the following MUMPS 
code: 

f i=i:1:100 s %=$r(5),x(%)=$s($d(x(%)):1+x(%),1:1) 

\.­
Also, suppose this experiment has the following outcome: x0 =19, x1 =19, 
x2 =18, X 3 =23 and x4 =21. Are the results compatible with the hypothe­
sis that $random produces a uniform distribution? Using equation (E7) 
directly or routine - AGGSC to compute x2 obtains the value x2 = 0.8 
with v = 4 degrees of freedom. Invoking $$Q-ZZNEWPR(. 8 ,4) obtains 
the probability .93845. (Note: that with 4 degrees of freedom, a x2 value 
of at least 9.5 is needed to reach the .05 level of significance.) [6] 

Student's t 

The ratio X / ~' where X is a unit normal random variable and 
x2 is an independent random variable distributed as chi-square with v 

degrees of freedom, has the distribution known as Student's t. [1] [2] 
(E8) gives the density function: 

r ( n+l) ( X2 )-(n+l)/2 
(E8) f(x) = ( ) ~ 1 + -r ~ n1r n 

(-oo < x < oo) [1] 
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This paper omits the related distribution function (given in note [2]), 
which is not used directly in the MUMPS code for Student's t. However, 
the following approximation for large v is used: 

(E9) A(tlv) ~ 2P(x) -1, 
t (1 - t) 

X = ✓ t2 
1 + 2v 

[2] 

A MUMPS extrinsic function to compute P(tlv) accompanies this pa­
per. This function integrates (E8) for v ::; 15 and uses the approximation 
(E9) for larger degrees of freedom. [7] 

Student's t computational example. Issues such as the suitability of 
statistical tests to particular purposes, the assumptions underlying tests, 
and so forth, are not considered in this paper. In general the t statistic 
is used in two ways: 1) to test the significance of the difference between 
an obtained mean and a theoretical mean, and 2) to test the difference 
between two sample means. The t-test routine - AGGST in the sources 
aG-vompanying this paper supports both of these applications (line tags 
Ti and T2 respectively). Another variant oft is used with correlated 
samples. Routine - AGGSR, also included with the sources, computes t­
test for related measures. 

To illustrate computing the probability oft, an example comparing a 
sample mean to a population mean is used. (ElO) provides an estimate 
oft for this case, with n - 1 degrees of freedom: 

(ElO) 
X-m 

t= 
Sx 

where 
s 

Sx = yn [8] 

Suppose 10 sample observations have been obtained and we wish to know 
whether the sample mean differs significantly from a population mean 
of 3 ( a < .05). The sample values are as follows: 2, 4, 4, 3, 5, 5, 4, 3, 5, 
and 5. Using Ti - AGGST we enter the sample data and obtain the value 
t = 3.0 with 9 degrees of freedom. To compute the probability of t, it 
is necessary to invoke $$CumT-ZZNEWPR(3,9) which returns p = .493. 
Because no hypothesis has been expressed about whether the sample 
mean will be greater or less than the population mean, a two-tailed test 
is appropriate. Therefore Q(3l9) = 1-(2 x .493) = .014, which is clearly 
less than the chosen a-level. 

The F Distribution 

If X] and X? are independent chi-square distributed random variables 
with v1 and Vz degrees of freedom, then the ratio of Xf / v1 and X? / Vz 
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has the F distribution with v1 and v2 degrees of freedom. F is sometimes 
referred to as the variance ratio, and is widely used in statistical analyses 
where effects are represented by mean squares. The density function of 
F is as follows: 

(Ell) 

r (m+n) (mn )m/2 x(m/2)-1 (1 + mn x)-(m+n)/2 
f(x) = r (W-) ~ (¥-) 

(0:Sx<oo) [1] 

The distribution function is omitted but can be found in note [2]. To 
compute P(Fjv1 , v2 ) using MUMPS, several cases are distinguished and 
separate methods are employed, based on the degrees of freedom. [9] 

Computational Example for F. 
A 3-factor factorial design example from Bruning and Kintz [10] is 

included in the - AGGSh initialization routines accompanying this pa­
per. The example (worked in note [10], pages 31-38) can be computed 
using the routine -AGGSFA. Working this example leads to an analysis-of­
variance summary table with sums of squares, degrees of freedom, and 
mean squares for each source of variance ( see note [10], page 38, or the 
output of -AGGSFA). Compute the probability of F = 121.1 associated 
with the "rate" variable. Invoking $$QF-ZZNEWPR ( 121. 1, 1, 40) obtains 
the result 0.00000. This does not mean that the probability is zero, but 
that Q is less than .00001, the smallest value returned by the $$QF() 

extrinsic function. Arguing F = 14.32 for the "lishrate" effect obtains 
the result 0.00050. Both of these computations belong to the case wfiere 
v2 is even, and therefore are computed by expanding a series. 

The Routine - ZZNEWPR 

The functions discussed in this paper are coded in the MUMPS routine 
-zzNEWPR. Several simple mathematical utilities are included: minimum 
value, absolute value and harmonic mean. Additionally, two methods of 
numeric integration are included and are discussed in note [4]. Briefly, 
the conventions used in routine -zzNEWPR are as follows: 
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• Mathematical constants are given as extrinsic functions without 
parameters: $$e (), $$PI(), and so forth. 

• Line tags of the form Pn where n = 1,2,3 evaluate products (pow­
ers), and tags of the form Sn return sums ( of the corresponding 
products). 

• The $$POWER() function is implementation specific. Users of 
MUMPS versions that do not implement exponentiation, or a 
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power function $ZCALL, will need to substitute a MUMPS power 
function such as the math library prototype (MDC: Xll/SC13/-
91-... ) . 

• Tags corresponding to probability density functions are named 
for the function, and the distribution function is named "Cum" 
followed by an abbreviation of the function name. 

• Numeric integration of the probability density function is not 
usually practical. Therefore other methods are used for the prob­
ability of primary interest, Q = l - P. These extrinsic functions 
typically begin with "Q" and approximations begin with "A." 

• Polynomials are evaluated using the "reverse Polish" method, 
that is without resorting to the $$POWER() function. 

The methods used in A ZZNEWPR can be significantly improved. These 
extrinsic functions are intended to illustrate functionality of estimating 
the probability of a statistic. Better algorithms and approximations can 
be found in the literature and coded in MUMPS as the need justifies. 

..... NOTES AND REFERENCES 

[1] James R. McCord III and Richard M. Moroney, Jr. Introduction to 
Probability Theory. The MacMillan Co. New York, 1965. The telephone 
exchange example and derivation of the gamma distribution are taken 
directly from this source. 

[2] Handbook of Mathematical Functions. Milton Abramowitz and 
Irene A. Stegun, Eds., Dover Publications, Inc., New York, 1972. 

[3] The extrinsic function for f( x) is found at tag Gamma A ZZNEWPR. 
Note that tags in MUMPS are case sensitive. To test the Gamma func­
tion write $$GammaAZZNEWPR(3.5). The correct answer is 3.32338. 

[4] Lloyd Milligan. Elementary Probability Functions. MUMPS Com­
puting, Vol 22, No 4, Sep 1992 pp 54-59. This article exhibits an extrinsic 
function for the trapezoidal rule and then applies this function to com­
pute the Normal probability. A minor error appears in the code for the 
trapezoidal rule. Line TRAPZ+5 should begin: S ©VAR=UB,©("SUM=" .... 

The error has negligible effect. However, a more efficient method of com­
puting Normal probabilities is given with the sources accompanying the 
current paper at tag CumNorm-ZZNEWPR, which uses a 6-term polynomial 
from note [2] with lc(x)I < 1.5 · 10-7 _ 

Sources accompanying the current paper also include Simpson's rule: 

l
b h 

a f(x)dx::::::: 3(Yo + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 4Yn-1 + Yn) 

where h = (b - a)/n. 
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Simpson's rule sums segments of parabolas instead of trapezoids to ap­
proximate the area. The parameter list for Simpson's rule is identical 
to that for the trapezoidal rule. Invoke $$SIMPS □Ns-zZNEWPR(EXPR, 
VAR, LB, UB, N), where EXPR contains a MUMPS expression for the 
function to be integrated, VAR contains the name of the variable of 
integration, LB and UB are the lower and upper bounds respectively, 
and N is the number of iterations. 

[5] Two accessory functions are used in addition to the $$Gamma() 
extrinsic function in computing (E5). First the fraction x2 r /(v + 2)(v + 
4) · · · ( v + 2r), essentially a "power" function, is evaluated at the tag 
P1-ZZNEWPR. The second accessory function evaluates the sum over r at 
S1 -zzNEWPR. Finally, the probability P(x2 Iv) is computed at p-zzNEWPR, 
which also invokes the $$Gamma() extrinsic function. 

The approximation for large v, (E6), is implemented at XrZZNEWPR, 
and invoked for v ~ 60 from 1rzzNEWPR. The result is justified to three 
places, which serves to clue the user that the x 2 approximation has 
been used. Of course, $$Q (CS ,NU) returns a probability after arguing 
$$Xi (CS, NU) to the cumulative normal function. 

[6] In a production application the extrinsic function to compute the 
probability associated with a statistic, for example Q(x2 Iv), would be 
called directly from the statistics routine. However, the statistics rou­
tines distributed with this paper are old ( ca. 1984) and the user can 
integrate probabilities or make other modifications to these routines as 
needed. 

[7] The tag CumT-ZZNEWPR returns P( {O :S x :S t}lv). To compute 
Q(tlv) use 1-(2*$$CumT()) for a 2-tailed test, or 1 - ( .5+$$CumT() l_for 
a 1-tailed test. The approximation given in (E9) assures accuracy to 
at least three decimal places for v > 15. The definite integral of the 
density function (E8) is computed for v :::; 15 to the same degree of 
accuracy. Numeric integration is slow, as previously noted. However, 
the t-distribution is normally used in contexts wherein only one or a few 
statistics are computed. 

Finally, an interesting inverse function Ap( x, v) ---+ t is given at the 
tag Ap-ZZNEWPR. [2] Four terms of the asymptotic expansion suffice to 
give three places accuracy when v > 3 and Q > .005. 

[8] Allen L. Edwards. Experimental Design in Psychological Research. 
Holt, Rinehart and Winston, New York 1963. 

[9] Series expansions for Q( Flv1, v2) are given in note [2] for the cases 
where v1 is even, v2 is even, and v1 , v2 are odd. When v1 = v2 = 1 the 
latter case reduces to the following: 

Q(F) = 1- 2tan-
1 ll 

7r 
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This special case is coded as Q11 AZZNEWPR in the sources, but requires the 
inverse tangent as an accessory function. [11] The series for even degrees 
of freedom are relatively simple. For example, the series expansion for 
the case where v1 is even is as follows: 

_ v2 /2 [ V2 v2(v2 + 2) 2 Q(Flv1, v2) - x l + 2 (1- x) + 
2

. 
4 

(1- x) + ... 

v2(v2 + 2) · · · (v2 + v1 - 4) ~] +--------'-(1-x) 2 

2·4··•(v1 -2) 

where, X = V2 

V2 + v1F 
[2] 

The case where v2 is even is similar. The products are expanded at tags 
P2 and P3AZZNEWPR respectively, and the sums are expanded at S2 and 
S3 A ZZNEWPR. The series expansion for the odd degrees of freedom case 
involves powers of trigonometric functions, and is not coded. 

An approximation for v1 and v2 large is also given in [2]: 

' 
Q(Flv1, v2) ~ Q(x), 

pl/3 (l - _L) 
X = 9v2 

✓ 9~ + p2/3_2_ 
1 9v2 

In practice, v1 > 8 and v2 > 10 suffice for accuracy to three deci­
mal places. This approximation is coded at tag ApQFAZZNEWPR. Line 
tag QFAZZNEWPR serves as an entry point for computing the probability 
1 - P(Flv1 , v2 ), automatically selecting the method appropriate to the 
degrees of freedom. The best cases are the series for even degrees of 
freedom and Q(Fll, 1). Next best is the approximation for large degrees 
of freedom. The worst is the case of small od.d degrees of freedom, which 
is handled by harmonic interpolation. 

[10] James L. Bruning and B.L. Kintz. Computational Handbook of 
Statistics: Second Edition. Scott, Foresman and Company, Glenview 
Illinois, 1977. 

(11] For the inverse tangent we use the function $$ATANRADAMATHALT, 
coded by Carl Bauer and Deidre Waclaw. 
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USER MAR 5,1993@14:11 

ZZNEWPR * * 212 LINES, 8246 BYTES 

ZZNEWPR;CHA/LM;03:49 PM 29 Oct 1992 

Listing 1 - Probability Functions 

;;Reference HMF = Handbook of Mathematical Functions, edited by: 

Q 

Milton Abramowitz and Irene A. Stegun 
Dover Publications, New York, 1972. 

gamma();;Euler's constant 
Q .577215664901532860606512 

e() 

Q 2.718281828459045235360287 

PI() 
Q 3.141592653589793238462643 

Cl() ;;Reciprocal of (square root 2 * Gamma 1/2) 
Q .398942280380143 

MIN(X, Y);; 
Q $S(X<Y:X,l:Y) 

ABS(X) ;;Absolute Value 
Q $S(X<O:-X,1:X) 

HM(A,B);;Harmonic mean of 2 quantities 
Q 2*A*B/(A+B) 

TRAPZ(EXPR,VAR,LB,UB,N);;Trapezoidal Rule 
N DX,SUM,@VAR 
S @VAR=LB,@("SUM="_EXPR).DX=UB-LB/N Q: 'DX 0 
F @VAR=LB+DX:DX:UB-DX D 
.S @("SUM="_EXPR_"*2+SUM") 
S @VAR=UB,@("SUM="_EXPR_"+SUM*DX/2") 
Q SUM 

SIMPSONS(EXPR,VAR,LB,UB,N);;Simpson's Rule 
N %,DX,SUM,@VAR 
S %=0,@VAR=LB,@("SUM="_EXPR),OX=UB-LB/N Q:'DX 0 
F @VAR=LB+DX:DX:UB-DX D 
.S %='%,@("SUM="_EXPR_"*2*(%+l)+SUM") 
S @VAR=UB,@("SUM="_EXPR_"+SUM*DX/3") 
Q SUM 

Pl(CS,NU,R);;Product: CS"R/((NU+2)*(NU+4)* ... *(NU+2R)) 
Q:R<l "" N %,IS %=1 F I=2:2:2*R S %=%*CS/(NU+I) 
Q % 

Sl(CS,NU);;Sum of $$Pl(CS,NU,R) from R=l to infinity. 
;;error< .00000001 
N %,S,I S (%,S)=O F I=l:l S %=%+$$Pl(CS,NU,I) Q:%-S<.00000001 S S=% 
Q % 

P(CS,NU);;Probabil ity of Chi Square, given NU degrees of freedom. 
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USER MAR 5,1993@14:11 Listing 1 - Probability Functions 

ZZNEWPR * * (cont.) 

;;HMF: 26.4.6, a series expansion for P(CS!NU). 
Q 1+$$Sl(CS,NU)*$$POWER(CS/2,NU/2)*$$EXP(-CS/2)/$$Gamma(NU+2/2) 

X2(CS,NU);;Approximation to the Chi-Square Distribution, NU>30. 
;;HMF: 26.4.14 
Q 2/9/NU-1+$$POWER(CS/NU,1/3)/$$POWER(2/9/NU,.5) 

'' 
Q(CS,NU);; 

Q:NU<60 $J(l-$$P(CS,NU),0,5) 
Q $J($$CumNorm(-$$X2(CS,NU)),0,3) 

Poly(X);;Polynomial approximation of Gamma(l+X), O<=X<=l, (HMF, 6.1.36). 

""I. 

Q: '$D(X) ! (X<O) ! (X>l) "" N B,G 
S B(l)=-.577191652,B(2}=.988205891,B(3)=-.897056937,B(4)=.918206857 
S B(5)=-.756704078,B(6)=.482199394,B(7)=-.193527818,B(8)=.035868343 
S B(O)=l,G=B(8) F B=8:-l:1 S G=G*X+B(B-1) 
Q $J(G,0,6) ;Absolute value of error(X) <= .0000003 

Gamma(X);;The Gamma (Factorial) Function, based on the recurrence 
;;relation: Gamma(z+l) = z*Gamma(z), O<X, (HMF, 6.1.15). 
N % S %=$S (X>2 :X-1 *$$Gamma(X-1 ).X>l: $$Pol y(X-1 ).X>O: 1/$$Rec ipG(X).1: "") 
Q $J(%,0,6-$L($P(%,"."))) 

FastG(X);;Selected values (integers and half integers up to 10) 
Q $S(X=.5:1.77245,X=l:1,X=l.5:.88623,X=2:l,X=2.5:l.32935,X=3:2,X=3.5:3.3 

... 2338,X=4:6,X=4.5:ll.6318,X=5:24,X=5.5:52.3431,X=6:120,X=6.5:287.887,X=7 

... :720,X=7.5:1871.27,X=8:5040,X=8.5:14034.5,X=9:40320,X=9.5:119293,X=10:3 

... 62880,1:"") 

RecipG(X);;l/Gamma(X), from series expansion for 1/Gamma(z), 
; ;(HMF, 6.1.34, reproduced from H.T.Davis, Tables of higher 
;;mathematical functions, 2 vols., Principia Press, Bloomington, 1935.) 
Q: '$D(X) '"' N K,R 
S K(l)=l,K(2)=.5772156649015329,K(3)=-.6558780715202538 
S K(4)=-.0420026350340952,K(5)=.1665386113822915 
S K(6)=-.0421977345555443,K(7)=-.009621971527877 
S K(8)=.007218943246663,K(9)=-.0011651675918591 
S K(l0)=-.0002152416741149,K(ll)=.0001280502823882 
S K(12)=-.0000201348547807,K(13)=-.0000012504934821 
S K(14)=.000001133027232,K(15)=-.0000002056338417 
S K(16)=.000000006116095,K(17)=.0000000050020075 
S K(18)=-.0000000011812746,K(19)=.0000000001043427 
S K(20)=.0000000000077823,K(21)=-.0000000000036968 
S K(22)=.00000000000051,K(23)=-.0000000000000206 
S K(24)=-.0000000000000054,K(25)=.0000000000000014 
S K(26)=.0000000000000001 
S K(O)=O,R=K(26) F K=26:-1:1 S R=R*X+K(K-1) 
Q $J(R,0,10) 
·********************************************************************** 
' 
·********************************************************************** 
' 

POWER(X,Y);;Implementation-specific 
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USER MAR 5,1993@14:11 Listing 1 - Probability Functions 

ZZNEWPR * * (cont.) 

Q X**Y ;DTM 

EXP(X) , , 
Q $$POWER($$e,X) 

DensityG(X,ALPHA,BETA);;Density function of the Gamma distribution 
Q $S(X>0:$$POWER(X,ALPHA)*$$EXP(-X/BETA)/$$P0WER(BETA,ALPHA+l)/$$Ga1T111a(A 

... LPHA+l), 1 :0) 

ChiSqr(X,N);;Density function of the Chi Square distribution with 2*N df. 
Q $S(N=.5:$$C1*$$P0WER(X,-.5)*$$EXP(-X/2),N=l:.5*$$EXP(-X/2),N=l.5:$$Cl* 

... $$P0WER(X,.5)*$$EXP(-X/2),N=2:.25*X*$$EXP(-X/2),N>2:$$P0WER(X,N-1)/$$PO 

... WER(2,N)*$$EXP(-X/2)/$$Gamma(N)) 

t(X,N) ;;Density function of the t distribution with N df. 
Q $$Gamma(N+l/2)/$$Gamma(N/2)/$$P0WER(N*$$PI,.5)*$$P0WER(X*X/N+l,N+l/-2) 

F(X,M,N);;Density function of the F distribution with (M,N) df. 
Q $$Gamma(M+N/2)/$$Gamma(M/2)/$$Gamma(N/2)*$$P0WER(M/N,M/2)*$$P0WER(X,M/ 

... 2-1)*$$P0WER(M/N*X+l,M+N/-2) 

ApQF(F,nul,nu2);;Normal approximation to Q(F) for large degrees of freedom. 
; ;HMF: 26.6.15 
Q 1-$J($$CumNorm(-2/9/nu2+1*$$P0WER(F,1/3)-1+(2/9/nul)/$$P0WER(2/9/nul+( 

... $$P0WER(F,2/3)*2/9/nu2), .5)),0,3) 

P2(x,nul,nu2,l);;I-th product in series expansion of Q(Flnul,nu2), (nul, even) 
N %, P S P=l \.. 
F %=1:1:I S P=2*%-2+nu2*P/2/%*(1-x) 
Q p 

P3(x,nul,nu2,I);;I-th product in series expansion of Q(Flnul,nu2), (nu2, even) 
N %,PS P=l 
F %=1:1:I S P=2*%-2+nul*P/2/%*x 
Q p 

S2(F,nul,nu2);;Series expansion of Q(Finul,nu2), (nul, even) 
N %,S,X S S=l,X=nu2/(nul*F+nu2) 
F %=1:1:nul-2/2 S S=S+$$P2(X,nul,nu2,%) 
Q $J($$P0WER(X,nu2/2)*S,0,5) 

S3(F,nul,nu2);;Series expansion of Q(FJnul,nu2), (nu2, even) 
N %,S,X S S=l,X=nu2/(nul*F+nu2) 
F %=1:1:nu2-2/2 S S=S+$$P3(X,nul,nu2,%) 
Q $J(l-($$P0WER(l-X,nul/2)*S),0,5) 

Qll(F) ; ;A special case: Q(Fll,1), Requires inverse tangent. 
Q $J(l-(2*$$ATANRAD'MATHALT($$P0WER(F,.5))/$$PI),0,5) 

QX1(F,nul,nu2);;Approximation using harmonic mean, (nul,nu2 odd, nul > 1) 
Q $$HM($$S2(F,nul-1,nu2),$$S2(F,nul+l,nu2)) 
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ZZNEWPR * * (cont.) 

Q1X{F,nul,nu2);;Approximation using harmonic mean, (nul,nu2 odd, nu2 > 1) 
Q $$HM($$S3(F,nul,nu2-l),$$S3{F,nul,nu2+1l) 

QXX{F,nul,nu2);;Approximation using arithmetic mean of harmonic means, 
;;{nul,nu2 odd, nul,nu2 > 1) 
Q $$QXl{F,nul,nu2)+$$QlX{F,nul,nu2)/2 

QF(F,nul,nu2);;Various cases: series expansions, approximation, 
;; interpolation 
Q: '(nu1#2) $$S2{F,nul,nu2) Q:'(nu2#2) $$S3{F,nul,nu2) ;Series Expansions 

... (nul or nu2 even) 
Q:nul>8&(nu2>10) $$ApQF(F,nul,nu2) ;Normal approximation 
Q:nul=l&(nu2=1) $$Qll(F) ;Special case for 1,1 degrees of freedom. 
;;Odd degrees of freedom, miscellaneous cases (Interpolation): 
Q:nul=l $J($$Q1X{F,nul,nu2),0,3) ;Weak approximation when df small. 
Q:nu2=1 $J($$QXl{F,nul,nu2),0,3) 
Q $J($$QXX(F,nul,nu2),0,3) 

CumF{F,nul,nu2);;F distribution with (nul,nu2) degrees of freedom. 
; ;Note: Q(Flnul,nu2) = 1-$$CumF{F,nul,nu2) 
;;For small degrees of freedom increase iterations (slow). 
N Cl,C2,C3,C4 
S Cl=$$Gamma(nul+nu2/2)/$$Gamma(nul/2)/$$Gamma(nu2/2)*$$POWER(nul/nu2,nu 

... 1/2) 
S C2=nul/2-1,C3=nul/nu2,C4=nul+nu2/-2 
Q $J($$SIMPSONS("C1*$$POWER(X,C2)*$$POWER(C3*X+l,C4)","X",O,F,100),0,5) 

A(t,nu);;Student's t approximation for large degrees of freedom. 
;;HMF: 26.7.8 
Q -t/(4*nu)+t/$$POWER(t*t/(2*nu)+l, .5) 

CumT(t,nu); ;t distribution with nu degrees of freedom. 
;;Note: Use 2*$$CumT for 2-tailed test, .5+$$CumT for 1-tailed test. 
; ;Q = 1-(2*$$CumT), or .5-$$CumT . 
Q $J($S(nu>15:$$CumNorm($$A(t,nu))-.5,1:$$TRAPZ("$$t(X,nu)","X",0,t,40)) 

. . . , 0,3) 

CumChi(ChiSqr,nu);;Chi Square distribution with nu degrees of freedom. 
;;Note: Q(ChiSqr,nu) = 1-$$CumChi(ChiSqr,nu) 
;;Note: 100 iterations suffice when nu> 5. 
Q $J($$MIN($$TRAPZ("$$ChiSqr(X,nu/2)","X'',O,ChiSqr,100),l),0,5) 

CumNorm(X); ;Polynomial Approximation to Normal Distribution 
;;HMF: 26.2.19. Use 1-$$CumNorm(X) for one-tailed probability. 
N D,P S D(l)=.049867347,D(2)=.0211410061,D(3)=.0032776263 
S D{4)=.0000380036,D(5)=.0000488906,D(6)=.000005383 
S D(O)=l,P=D(6) F 0=6:-1:1 S P=P*X+D(D-1) 
Q $J($$POWER(P,-16)/-2+1,0,5) 

Gl(X) ;;These polynomials are used in the asymptotic expansion for 
;;the inverse function: X (Normal) -> t. 
Q X*X*X+X/4 -
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TrackWareTM l 
l 
i 

The Only O:mfiguration Management Tool You Need I 
l 

Specifically designed for use with software written in 
MUMPS, TrackWare represents the industry's 
most comprehensive solution to configu­
ration management and product 
distribution. From receipt of an 
enhancement request to deliv­
ery of the completed package, 
TrackWare controls and 
monitors the entire product 
development cycle. 

TrackWare offers devel-
opers easy access to all products 
and versions under its control. 
The system's open architecture can 
also provide an interface with third-party 
software packages such as DEC/Test Manager 

andRE/m.~ 

GJolJaJWare 
CORPORATION 

USER MAR 5,1993@14:11 

ZZNEWPR * * {cont.) 

G2{X) 
Q {{5*X*X+16)*X*X+3)*X/96 

G3(X) 
Q (((3*X*X+l9)*X*X+l7)*X*X-15)*X/384 

G4(X) 

3 

Configuration management is accomplished through a l 
single logical library. As software modifications are J 

made, TrackWare identifies all product l 
releases affected. In some cases, the j 

system can even make necessary j 
updates automatically. 1 

Finally, TrackWare l 
controls distribution including j 
media selection and creation, l 
delivery, and installation. I 

Other features include a j 
customer database, call tracking, j 

and a time sheet system; the modular · 
TrackWare system can easily be cus­

tomized to meet your specific needs. 
To learn more, call us at 617-523-5556-

and put '.lrad<Ware to work for you. 

1rackWareTM 
The Comprehensive MUMPS Software 

·configuration Management Tool 

\c. 

Listing 1 - Probability Functions 

Q ((((79*X*X+776)*X*X+l482)*X*X-1920)*X*X-945)*X/92160 

102 M COMPUTING 

Ap(X,nu);;Given X, a normal deviate and nu degrees of freedom 
;;return Student's t to 3-places when nu> 3 and Q > .005 

Q $J(((($$G4(X)/nu+$$G3(X))/nu+$$G2(X))/nu+$$Gl(X))/nu+X,0,3) 
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