
M SYSTEM
ADVANTAGE

REMOTE and LOCAL DATABASE ORCHESTRATION

August M. Turano, Ph.D.
MED-CH EK, A DAMON LABO RA TORY

4900 Perry Highway
Pittsburgh, PA 15229

(412) 931-1281

ABSTRACT

The ability to create a high availability system

using a common P.C. programming language, coupled

with a separate distributed database on a PC-LAN, is

discussed. Use of the M-language, M and DOS

operating systems, and interaction with P.C. client

programs thru a network is described and explained.

The utilization of P.C.'s as transaction agents allows a

client/server interaction to develop. P.C. non-MUMPS

software provides the user with windowing, event

driven programs, mouse control, and graphics without

the need for expensive terminals, and does not

degrade a mainframe hosts' performance. A

description of system architecture, software

methodology, networking, cost and time factors are

given, when applying this method to a business

application.

8 M COMPUTING

KEYWORDS

M, distributed database, cooperative

processing, client/server, high availability systems,

journalling

\..

INTRODUCTION

Databases represent key software technology

that drives data acquisition and retrieval in the

information age. Databases exist for virtually all types

of hardware and software environments, from the

smallest P.C. to the largest mainframes. Until recently,

databases have been separate and distinct units that

might, but usually did not have to, interact with front

end application programs. Distributed database

software is still not a popular technology, although

activity in this area is growing. This article will

demonstrate prototype applications where local P.C.

June 1993

1tabases are utilized by GUI (§raphical yser

erfaces) front end programs that use both local X­

ase databases and a large distributed M database on

remote machine, to work in concert to perform

· arious application tasks. Development of

ophisticated modern interfaces that can be designed

oy screen oriented drag and drop drawing programs,

particularly appealing to those system analysts and

designers that must reengineer older applications or

create new applications that compete against first

class modern interfaces.
-:\

MODERN INTERFACES

The traditional roll and scroll interfaces are a

. thing of the past. Users demand color, pop-up help

windows, and disappearing and reappearing screen

control elements. These elements must react

appropriately to the most varied and broad spectrum

screen input. Large computers that offer graphical

capability, such as X-Windows1 and Motif, have been

used, but require special terminals and can be very

CPU intensive. Microsoft Windows2 has become

extremely popular and many users are very

comfortable in this type of application environment

where a consistent user interface is displayed. The

June 1993

cost of P.C. MIPS (Million Jnstructions _eer §econd) is

roughly a factor of ten (1 O) or more, less expensive

than mainframe MIPS. Therefore, if a P.C. can be

utilized to validate, perform screen data capture, and

obey user directives, such as mouse clicks, it makes

sense to use them. Great cost savings can be realized

by employing cooperative processing utilizing both

P.C.'s and larger machines connected by networks.

Providing better functionality at a reduced cost is a

worthy goal for system designers. P.C. hardware is

inexpensive, as is most P.C. software; this allows for

experimentation and development. In comparison,

operating systems, application interfaces,

programming languages, statistical packages, graphics

packages, etc. cost hundreds of dollars for the P.C.,

while the same functionality on a mini or mainframe

computer could run into the thousands or tens of

thousands of dollars.

Event driven computing has now become the

defacto standard for most commercial applications.

This programming paradigm is not difficult to learn, it

just takes a while to adjust to it. Traditional

programming usually begins with declarations, then

input, computation, and finally output. This activity is

usually performed in a top-down manner. In the event

M COMPUTING 9

driven environment, the user drives the application by

clicking on a screen control element, or an action or

command button. The user decides the program path,

and the application designer merely enforces the rules

with which given activities may occur. Some controls

may be changed from active to inactive or a new

question may appear on a pop-up window in response

to input from another control item. A control item

might be a command button (FILE/QUll), a text box, a

radio button (buttons that are mutually exclusive eg.

sex: male or female), or a list box. Activities that can

occur depend on the type of control. Each control

object has properties associated with it. The

programming environment should limit what operations

can be performed on each control. The old style of

one line at the bottom of the standard text mode

screen for a warning and/or error message is-gone.

Creating user friendly software for the front end of an

application, such as a data entry transaction, can aid

in areas where employee turnover is usually high:

Reengineering critical applrcations can be very

important to keeping business applications running

successfully. Again, the cost of the software and

hardware makes tools and experimentation in this area

of computing both exciting and worthwhile.

10 M COMPUTING

COMBINING LOCAL P.C. X-BASE

TECHNOLOGY WITH A REMOTE M DATABASE

Defined more traditionally as client/server

computing, the P.C. and a remote network or large

mainframe can work together to accomplish a given

transaction. The P.C. can be thought of as the front

end client responding to the user and making a

request to the remote database server. The function

of validating input and responding to mouse clicks or

commands when the transaction is ready to be filed is

a primary function. Next, forwarding the accumulated

information to the host machine or network to store the

data in a separate repository is highly desirable and

more secure. The remote database system can be

connected via Ethernet or even RS-232 lines

depending on the speed and the amount of
\..

communication that needs to be performed between

the P.C. client and the host server. In the popular

vernacular, the operating environment between the

P.C. and the host is utilizing DOE (Qynamic Qata

gxchange). "DOE is an open language-independent,

message based protocol that lets applications

exchange data or commands in any mutually agreed

on format. The basic concept is that of conversation

between client and server, with the client being the

June 1993

initiator"3
• It is the message, not the medium, that is

important in moving data between independent

computer systems.

The client software performs a variety of tasks,

such as forms presentation, data acquisition and

validation. It executes the logic associated with a.

particular transaction in relation to the application.

Data captured by the presentation layer can also be

used for data manipulation, queries, etc. Using the

local P.C. for validation and program execution

minimizes the need for constant data requests on a
""\

network; data is requested only on an as needed

basis. Sorts and searches can be executed locally,

even if the data must be retrieved from the host server.

Report generators, statistical and graphics packages

can be used to produce output, either directly from the

database or indirectly from secondary files that might

have been created from a search or sort function. The

P.C., which is usually a single user entity, provides

very little security for data; message protocols and

passwords are necessary to implement proper user

authentication. System maintenance is also difficult. If

data is stored on various local P.C. databases, it is

difficult to insure that proper backups are performed,

or that the local database file structure is intact, or that

June 1993

database maintenance is routinely performed. At best

it is extremely difficult to manage important data in this

manner, so a central data repository makes more

sense, and yields a higher confidence level in the

application system. This data repository is the remote

database server. The database server will handle data

storage and backups, provide access and security

mechanisms and provide data via database •seeks and

gets• using the correct respective indexes to that data.

The function of the front end and database server can

be summarized as follows4 (see Figure 1):

GUI Front End

- forms presentation
- data capture
- data validation
- application logic
- report tools
- menus
- data manipulation

Database Back End
The Database
Server

- security/access
- backups
- archival activities
- indexes
- data retrieval
- data storage

Front End/Data Server Functions

Figure 1

In coupling the P.C. programs to the remote

database, speed of display and accuracy of the data is

critical. There should be no noticeable delay in an

application if lookups are being done either locally or

M COMPUTING 11

remotely. Fast disks for data inquires are essential in

either case. Access time using the network data will

predominately take longer than a local database query.

For this reason local databases should be used

whenever and wherever possible.

It is advantageous when trying new technology

to use resources which keep the learning curve low.

The X-Base database standard for local database

construction is a common very familiar format, which is

taught in almost every introductory database course.

X-Base is extremely popular and powerful when one

considers the abundance of software utilities and

libraries from third parties that are available for just

about any kind of data manipulation that might be

encountered. X-Base provides several basic data

types such as,

CHARACTER - alphanumeric text

MEMO - longer text files

DATE - a valid date field

NUMERIC - numbers where width and decimal

places are specified

LOGICAL - yes or no

In dBase data is stored in files that are

comprised of individual data fields. A programmer

12 M COMPUTING

selects a file with the appropriate index, then can seek

or position the file to access any of the data. The

dBase program code accesses individual fields much

like a global reference with data in various piece

positions, then manipulation of each element can

OCCllr.

In X-Base form, quick database lookups can be

performed using indexed files, where B-tree type file

construction provides fast access to specific data.

Fields can be combined to form combination indexes

(client number+ patient ID) where the need for more

involved lookups is a factor. Clipper5, as well as

dBase6 provides an easy-to-learn programming

language to access any database file that is created in

that environment. The advantage of using a product

like Clipper is that it provides a complete system that is
'-

portable; the end user does not have to own Clipper.

Clipper produces executable files that are C-extensible

(can call C routines directly) and can be distributed

royalty free. Thus, a large site with many P.C.'s can

use the application software for just the development

cost, no additional royalties or licensing is needed.

Clipper and/or dBase can provide a good database

environment, but for reasons discussed earlier,

database administration and system functions are

June 1993

difficult to manage. A combination of both local and

remote databases to be used at will is optimal. This

will minimize data traffic on the network and provide

the advantages of the P.C. programming envfronment

combined with the security and database

administration associated with a larger remote

database. An application designer knows what files

are static such as religion, race, states, etc. and these

files can be kept locally on the P.C. Large pools of

information such as patient names, ID's, daily

transactions, prescriptions, bank account transactions,
""I.

etc. would be kept remotely. It was with this design

that the first prototype applications involving patient

queries and a patient registration filing application was

created.

Clipper was used to design several local

databases, but yet the P.C has access to all patient

data that was stored on the remote M database. The

remote database in our clinical environment consists of

six (6) gigabytes of data distributed on four (4) 486/33

machines running MSM-MUMPS 3.0.127
• The patient

registration application necessitated the creation of

several Clipper utility programs that would allow

recreation of SET $PIECE and normal $PIECE

extraction functions. A set of library routines was

June 1993

written to allow Clipper application code to make direct

M calls in a noncryptic and straightforward way. This

library works by preparing data and acquiring results

via Clipper in a function called MCMD, whose syntax is

simply MCMD ("mumps command here"). DEC (Qigital

!;lectronics .Qorporation) provides a DOS product DSM

DDP _DOS8 to provide access to using DSM-DDP

protocol. This TSR product provides access using

Ethernet directly from the DOS environment. A

resident TSR assembles and disassembles packets for

the Ethernet network. Each M command has a

specific format that must be constructed before the

interrupt call that activates the TSR can be made. This

syntax, while effective, was tedious to code in

application software. A clean way to allow a M

programmer access to this functionality was

developed, which provided an M syntax that was

familiar. Support for SET, KILL, LOCK, $ORDER,

$GET, $QUERY, volume set selection, and network

open and close utilities provided by the TSR were

adapted to a more conventional syntax. In this way,

both Clipper syntax and M syntax could be hybrid to

design the application.

An example of the Clipper code for performing

an M function, such as $DAT A follows. Calls to the

Al COMPUTING 13

Grumpfish library' add sparkle to this application using

special screen techniques and color. To illustrate the

Clipper to M interface, consider the following Clipper

code used to obtain $DATA("" PA(value)) from the M

database. In Clipper, we would build the full M

reference as a string and pass it on tp M as follows:

GLOBREF:=•"" PA(•+CHR(34)+value+CHR(34)+')'

CMDSTR:=1$D(1 +GLOBREF+1
)

1

RES:= MCMD(CMDSTR)

The result, RES, would contain the value

returned by $DATA. Note that in Clipper, the·+• is the

concatenation operator when operating on strings.

See Appendix A for additional examples. The actual

performance of the system was quite good. It

delivered over 125 database reads per second

(approximately .008 seconds per read). These

numbers are, of course, dependent on the user load,

network traffic, speed of the disks and the CPU

processing the requests.

VISUAL BASIC, CLIPPER and M

Clipper, although extremely powerful and easy

to use, still lacks in mouse support and ease in overall

GUI creation. For these reasons the research

continued for a better way to create friendly, attractive

14 Al COMPUTING

user interfaces. Visual Basic has been getting rave

reviews for both its DOS and Windows versions.

Visual Basic allows the creation of a form, drawn by

pointing and dropping items onto the window. All

items on the form are given a control name and

depending on their type, specific properties are

associated with them. For example, a text box can

have width, border style, color descriptions for

foreground and background, a tab stop number,

activity for when the control is activated or deactivated

and more. Controls can be grouped together or

created separately. A complete development

environment with menu construction, mouse support,

and ease of coupling the form with specific program

code are provided. The language is easy to learn and

use, it is Basic with much greater power and control
\..

than ever before. Libraries for doing a variety of

functions are provided as part of the Professional

edition 10
• Visual Basic puts the fun back into

programming. Programs can be created for either the

Windows or DOS environment, so that a nice looking,

colorful interface can be designed for whatever

platform is deemed appropriate. The event driven

programming paradigm is a little hard to get used to at

first, but just takes a day or two to achieve a

June 1993

satisfactory comfort level. Drawing the interface that

the user wants is what GUI design is all about and

Visual Basic provides that with great ease. In Visual

Basic, timers can be set, graphics can be used,

complete 1/0 capabilities are available and EXE files

are the final output. The biggest drawback to Visual

Basic is the ISAM (Indexed Sequential Access Method)

file structure. It is awkward, not an industry standard,

and is limited to 128 Megabytes per file. For this

reason a hybrid of Visual Basic coupled with a Clipper

Database file structure was chosen as the

"' development path. A third party vendor, Sequiter

Software11 provided a set of library routines that

allowed access to all dBase functions, such as seek,

goto record, and get field data. Thus, it was possible

to combine the ease of programming afforded by

Visual Basic with the standard dBase format and

plethora of access tools and report generators

available to the dBase programmer. Visual Basic

could now be used just as Clipper was, in the initial

experiments to develop P.C. client applications. These

applications use the same remote access TSR

software that was used in the first Clipper applications.

The only changes necessary were internal to the

library routines to handle details concerning mixed

June 1993

language memory allocation and string passing

inconsistencies.

CONCLUSION

Redesigning the user interfaces of currently

operating application code is a common and very

important task. Giving applications a face lift benefits

both the users and the system designers. If this task

is performed correctly, using cooperative processing

techniques can save precious mainframe or host

database CPU cycles and improve overall system

performance. Using the P.C. to perform basic 1/0 and

validation can significantly off load a host processor.

The ease of learning and the power of P.C. languages,

such as Clipper ()(-Base) and Visual Basic, make the

reengineering of many applications an exciting activity.

The use of royalty free third party libraries allows both

consistency and solid software construction affording

both modularity and reusability of code. Redesigning

the user interface is always worthwhile particularly for

older applications, after all the user thinks the interface

is the program.

M COMPUTING 15

ACKNOWLEDGEMENT

The author gratefully acknowledges the

programming skills of YeYi Wang, who created vital

parts of the interface library.

ENDNOTES

1 X-Windows - ANSI Standard Protocol, Committee.
X3H3.6, also MUMPS MDC document
X1 .1 /SC11 /TG2/91-2.

2 Microsoft Windows 3. 1 ~ Microsoft Corporation,
1990-1992.

3 Kevin Kornfeld and Kevin Gilhooly. "OOPS via DDE".
Byte. June 1992, pp. 145-154.

4 Tom Duesher. "Selling the Database Server".
Reseller Management. July 1991, pp. 54-61.

5 Clipper - CA & Associates@. Nantucket Corporation,
1984-1990.

6 dBase N - Aston-Tate, A Borland Company@. Borland
International, Inc. 1988-1992.

7 Micronetics Mumps@. Micronetics Design
Corporation, 1992

8 DSM-DP-DOS, Software product, post #'s. BI-PB8XA­
BK and BI-PBDAA-BK.

9 Greg Lief. Grumpfish Library@. Grumpfish, Inc.,
1988-1991.

10 Microsoft Visual Basic Professional Edition,
Programming System for MS-DOS@. Microsoft
Corporation, 1992.

11 CodeBasic, Database Management@. Sequiter
Software, Inc., 1988-1992.

16 Al COMPUTING June 1993

APPENDIX A Clitmer access of MUMPS database

/* acn.prg program that uses DEC-DDPDOS and CA-CLIPPER to access a remote MUMPS database for lookups as
well as data deposits * /

/* Copyright 1993 A Turano Ph.D. * /

JI Necessary initialization
// The following are modules that are contained in CDDP.LIB

EXTERNAL MCMD
EXTERNAL OPENDDP
EXTERNAL CLOSEDDP

UCI="LAB"
VOL="LPB"
RES:=""
ACN :="

LOOP:= 500

-,,
II Set screen up

// select user access account
// select volume set to access

II Set RES (result) to character,
// (accession number of specimen) to character

// how many times do you want to go thru the loop
// accessing remote data

SA VE_DRAPE("temp.scr") fl fancy save for DOS screen - restore on exit
SET COLOR TO "W+/B,W/R" //set some screen color parameters
SET DECIMALS TO 4 //set number of decimals for computations
SET SCOREBOARD OFF //don't show the bottom screen al:tivity monitor
CLEAR SCREEN

// call grumpfish exploding box function

msg="Med Chek Labs - A Damon Laboratory"
CLRSCR(5) 'fancy screen wipe
@23,30 SAY "Hit a key to continue "

FALLGUY(20,23,msg,100) II grumpfish library calls
RAINBOW(msg) // grumpfish library calls

II Open Channel to MUMPS system
CLRSCR(8)

ExpBox(l,1,22,76,l,20,"W+/BG+","Accessing MUMPS through Clipper")
SET COLOR TO "W+/BG+"
OK:= OPENDDP(UCI,VOL) //open the DDP channel
IF OK= -1

IMPBOX(20) //make an imploding box
CLS
@ 5,5 SAY "Bad UCI or VOLUME name!"

June 1993 M COMPUTING 17

RETURN
ELSEIF OK = -2

IMPBOX(20)
CLS
@ 5,5 SAY "DDP unable to start .. "
RETURN

ENDIF

// Get ACN from user
@ 2,5 SAY "Enter starting accession number:" GET ACN PICTURE "!9999999"
READ
setcolor("B/BG+ ")
@ 2,5 say "MUMPS $0 through Patient File, "+str(LOOP)+" Records"
setcolor("W +/BG+")

// Build MUMPS command
GLOBREF := ""'PA("+CHR(34)+ACN+CHR(34)+")" //construct the global reference
CMDSTR := "$D("+GLOBREF+")" //make the command string to be performed

// Look at the MUMPS system and see it that ACN exists
RES = MCMD(CMDSTR) //execute a MUMPS command-remote $D
qout("res=",RES) //this is the result
res:= VAL(res) // everything from MUMPs is character MAKE numeric
IFres=0

IMPBOX(20) // grumpfish function
CLS
@ 5,5 SAY "Accession number not found!"

ELSEIF res= 10
IMPBOX(20)
CLS
@5,5 SAY "Accession number not defined but has descendents."

ELSEIF res= 1
IMPBOX(20)
CLS
@5,5 SAY "Accession number found and has NO descendents."

ELSEIF res= 11
IMPBOX(20)
CLS
@5,5 SAY "Accession number found with descendents."

ENDIF
? "Press any key to continue ... "
INKEY(0) //wait for user to continue

// Found the accession#, so get the info
CMDSTR := "$G("+GLOBREF+")" //construct another command string
RES = MCMD(CMDSTR) //go visit MUMPS
TARRAY := {} // TARRAY is an array to hold the pieces of data

//dynamic array allocation--just like MUMPS!
DATA:= EXPIECE(RES,""'",19,TARRAY) /;Extract the 19th piece of RES

//TARRAY is just in case you want
//more.

18 M COMPUTING June 1993

// Display that patient's name+sex+age

@ 3,5 CLEAR TO 21,75
rollup(padr(TARRAY[14],35)+padr(TARRAY[16],10)+TARRAY[17])

// Display next LOOP patient names and time it

STARTTIME := TIME()
FOR 1=1 TO LOOP-1 // DO SOME $0 FUNCTIONS

// Get the next ACN # - Perform the $0 function

CMDSTR="$O("+GLOBREF+")"

RES = MCMD(CMDSTR) // go visit MUMPS

II Get data for that ACN #

GLOBREF=""'PA("+CHR(34)+RES+CHR(34)+")" //global reference
CMDSTR := "$G("+GLOBREF+")"

RES = M¼MD(CMDSTR) //go visit MUMPS

// Pick out the patient's name
TARRAY := {}
DATA= EXPIECE(RES,""'",19,TARRAY)
// Write out PIECES 14=Name+PIECE 16=Sex+PIECE 17=DOB
rollup(padr(TARRA Y[14],35) +padr(TARRA Y[16],10)+ TARRA Y[l 7])

NEXT
ENDTIME : = TIME()

// Show the results and times

@ 2,5 CLEAR TO 21,75
@ 4,5 say "Starting Time:" + STARTTIME
@ 5,5 say "Ending Time: " + ENDTIME
SECS:= ComputeTime(STARTTIME, ENDTIME)
@ 7,5 say "Seconds per read, piece, and display: " + STR(SECS/LOOP)
@ 8,5 SAY"# Reads, pieces, displays per second:" + STR(LOOP/SECS)
@ 17,5 SAY "Press a key to CONTINUE ... "
INKEY(0)

// Display that patient's name
clrscr(2)
setcolor("B/BG+ ")
@ 2,5 SAY "MUMPS $Q through Patient File, "+str(LOOP)+" Records"
setcolor("W +/BG+")

// Display next LOOP patient names and time it

June 1993 Al COMPUTING 19

STARTI'IME := TIME()
FOR I= 1 TO LOOP // DO SOME $0 FUNCTIONS

II Get the next ACN #
CMDSTR="$Q(" +GLOBREF +")"
RES = MCMD(CMDSTR) //go visit MUMPS

II Get data for that ACN #
GLOBREF:=RES
CMDSTR := "$Q("+GLOBREF+")"

RES = MCMD(CMDSTR) // go visit MUMPS

rollup(globref+" = ")
cmdstr= "$G(" + glob ref+")"
RES = MCMD(cmdstr)
rollup(res)

NEXT

ENDTIME := TIME()

// Show the results

@ 2,5 CLEAR TO 21,75
@ 4,5 say "Starting Time: " + ST AR TI'IME
@ 5,5 say "Ending Time: " + ENDTIME
SECS:= ComputeTime(STARTI'IME, ENDTIME)
@ 7,5 say "Seconds per read, piece, and display:" + STR(SECS/LOOP)
@ 8,5 SAY"# Reads, pieces, displays per second:"+ STR(LOOP/SECS)
@ 17,5 SAY "Press a key to exit ... "
INKEY(0)

// Measure only READ time
@ 2,5 clear to 21,75
setcolor("B/BG + ")
@ 7,5 SAY "Measure of RAW SPEED doing "+str(LOOP)+" $Qs:"
setcolor("W +/BG+")
SET CURSOR OFF
STARTI'IME := TIME()
FOR 1=1 TO LOOP // DO SOME $0 FUNCTIONS

CMDSTR="$Q("+GLOBREF+")"
RES = MCMD(CMDSTR)
GLOBREF:=RES
CMDSTR := "$G("+GLOBREF+")"
RES = MCMD(CMDSTR)

NEXT

20 Ill COMPUTING June 1993

ENDTIME := TIME()
SET CURSOR ON
SECS:= ComputeTime(STARTIIME, ENDTIME)
@ 9,5 SAY "Seconds per READ: " + STR(SECS/LOOP)
@ 10,5 SAY "READS per second:"+ STR(LOOP/SECS)

//Closeup
@ 15,5 SAY "Press a key to exit ... "
INKEY(0)
ImpBox(20) // Close up the on-screen box
PULL_DRAPE("TEMP.SCR",30) //GRUMPFISH FUNCTION

RETURN

II***

//Mimic the $Piece function with some extras

FUNCTION EXPIECE(mstring,delim,n,riarray)
local xstr,i && xstr=is working string, i=loop counter

IF N>256 .._

&& n is the piece you want, narray =logical return
&& entire array of pieces

return "* Error piece number too large*"
ENDIF
xstr=mstring+delim
FOR i=l TON

pos=AT(delim,xstr) && postion of delimiter
IF pos=0

EXIT && exit the loop
ENDIF

pie=SUBSTR(xstr,l,pos-1)
IF narray!=NIL
AADD(narray,pie) && Build an array of pieces

ENDIF
IF i=n

return pie
ENDIF
xstr=SUBSTR(xstr,pos+ l,len(xstr)-pos)

NEXT
RETURN NIL && not found

/**/
//Mimic the set $piece function

FUNCTION SETPIECE(mstring,delim,N,mvalue)
&& RELEASE parray && clean up the array before starting ...
IF N>256

return "* Error piece number too large*"
ENDIF

June 1993 M COMPUTING 21

xstr=mstring+delim
i=0 && counts the number of delimiters
DO WHILE AT(delim,xstr)>0

i=i+l
pos=AT(delim,xstr) && postion of delimiter
pie=SUBSTR(xstr,1,pos-1)
AADD(parray,pie) && Build an array of pieces
xstr=SUBSTR(xstr,pos+l,len(xstr)-pos) && shorten string by 1 delim

ENDDO
IFi<n && This code will add null elements to the needed depth

FOR J=l TO N-i
AADD(parray, "")

NEXT

ENDIF && delimiter
parray[N] =mvalue &&set the appropriate element
mystring=""

FOR l=l TO LEN(PARRAY) && construct the changed delimited string
mystring=mystring+parray[i] +delim

NEXT
mystring=SUBSTR(mystring,1,LEN(mystring)-1)

RETURN mystring

function ComputeTime(STARTTIME, ENDTIME)
local MINS, SECS

MINS := V AL(SUBSTR(ENDTIME, 4, 2)) - V AL(SUBSTR(STARTTIME, 4,2))
SECS := V AL(SUBSTR(ENDTIME, 7, 2)) - V AL(SUBSTR(STARTTIME, 7,2))
IF SECS< 0

SECS := 60 + SECS
ENDIF

return(SECS +60*MINS)

/* **********************FUNCTION rollup ******************* */
STATIC FUNCTION rollup(mtxt)

SCROLL(2,5,20,70,1) II TOP LEFT, BOTTOM RIGHT , # OF LINES TO SCROLL
@20,5 SAY mtxt
RETURN NIL

22 Al COMPUTING June 1993

