
STATISTICS &
ANALYSIS

BERA VIOR OF $RANDOM ACROSS MUMPS IMPLEMENTATIONS

T. Bain Henderson

Ralph H. Johnson VA Medical Center
Charleston, SC

Abstract

The MUMPS Standard requires that the intrinsic function
$RANDOM return a random or pseudo-random integer which
is uniformly distributed in the closed interval [0,intexpr-1).
Several commercial implementations of the MUMPS $RAN­
DOM function are reviewed. The results are contrasted to
random number functions in two other programming languages
and are considered in terms of the general concepts of software
reliability, the inherent complexity of software systems, and the
difficulty associated with evaluating such systems using the
MUMPS $RANDOM function as a model.

1. Introduction

Humans often apply the term random to phenomena which are
difficult to predict, i.e., items which are aimless, haphazard or
lacking in apparent purpose. This intuitive view is in stark
contrast to the use of the term random when one generates
random numbers with a computer. In this latter context, a
series of numbers can be random but absolutely predictable.
Random numbers generated with a computer are generally
termed pseudo-random or quasi-random and these numbers
may be. termed qualitatively random by virtue of the way they
are generated. It appears that random is not so much in the
what as in the how, at least where computers are concerned.

2. Computer Generation Of Random Numbers

A number of programming languages, i.e., BASIC, C, and
MUMPS (to mention a few) provide tools which make the
generation of random numbers relatively easy. A common
method of generating random numbers with a computer is by
use of variations of the linear congruential method:

Sn+i = (mSn + i) mod u
where S is the starting value;

m is the multiplier;
i is the increment;
u is the modulus.

78 M COMPUTING

(1)

Equation 1 is straight forward but the behavior of a generator
which uses this approach is highly dependent on the values of
m, i, and u; and there is something of an art associated with
the selection of appropriate numbers (See Knuth1 or Jain2 for
extended discussions of this type of generator). A random
number generator which relies on Equation 1 will, theoretical- I
ly, generate a uniform distribution of numbers.

3. Testing Random Number Generators

A chi-square test is commonly used to test the output of
random number generators for non-randomness. Indeed,
chi-square is one of the tests used in the National Bureau of
Standards MUMPS Validation Suite to test $RANDOM for
adherence to the MUMPS standard3

•

where i = the increment, i.e., 1, 2, 3, ,k;
k = the number of categories;
0 = an observed frequency;
E = an expected frequency.

(2)

It can be shown, for relatively large samples, that chi-square
will follow the chi-square distribution with k-1 degrees of free­
dom. Keep in mind that chi-square does not tell us that our
series of numbers is random; rather it detects departures from
random behavior. If, for example, we executed the MUMPS
line,

F I=0:1:29 W $R(10)," "

we might obtain the following sample of random numbers, 7
75663519951739374437955592826
which are summarized in Figure 1 on the following page.

If we now compute a chi-square using our theoretical set of
numbers we will obtain the value 11.33. We can see in Table
1 that our value (V) of 11.33 falls between the p = 50% level
and the p = 75% level. According to Knuth (Page 44):

June 1993

Frequency

2 3 1 5 6

Digit Generated

Figure 1 Trial $RANDOM Output

If V is less than the 1"% entry or greater than the 99% entry,
we reject the numbers as not sufficiently random. If V lies be­
tween the 1 % and 5 % entries or between the 95 % and 99 % en­
tries, the numbers are "suspect"; if (by interpolation in the
table) V lies between the 5 % and 10 % entries, or the 90 % and
95 % entries, the numbers might be ."almost suspect."

p=1% 2.09

. p=5% 3.32

p=25% 5.90

p=50% 8.34

p=75% 11. 39

p=95% 16.92

p=99% 21.67

Table 1 Chi-Square Table For 9 Degrees of Freedom

Following Knuth's logic, we can interpret our chi-square value
of 11.33 as an indication that the numbers in our test series do
not represent a substantial departure from random behavior.
Note that we have not proven that our series is random, rather

June 1993

we have shifted the burden of proof away from the notion that
our series is not random.

4. Random Number Functions In MUMPS Implementations

The MUMPS Standard requires that the intrinsic function
$RANDOM return a random or pseudo-random integer which
is uniformly distributed in the closed interval [0,intexpr-1].
We have reviewed the MUMPS $RANDOM function of the
five MUMPS implementations which are listed in Table 2.

Vendor Product

Datatree DTM-PC 4.3K

Digital VAX DSM V6 . 0A

MGlobal MGM/PC 5.08

MGlobal CCSM 5.03

Micronetics MSM-PC 3.0.8

Table 2 MUMPS Implementations

A vendor specific batch of numbers was generated with the
following MUMPS line:

F 1=0:1:9999 W $R(l0)

The output for each MUMPS implementation is summarized in
Figures 2 through 6. A review of these summaries indicates
no dramatic departures from what we would expect, i.e., a
uniform distribution ·of numbers between O and 9. I have
compu,ted a chi-square value for each of our vendor specific
numeric series and the results are listed in Table 3. If we use
Knuth's guidelines, we will accept all of the outputs, except
CCSM, as not deviating in any significant fashion from
random behavior, at least as far as we are able to tell using a
chi-square value as an indicator.

Further Analysis

Tables 4 through 8 (included as Attachment A) summarize the
output of the following MUMPS line for each MUMPS
implementation:

F N=0:1:21 W $R(10),!

Al COMPUTING 79

:Ii

1'

Frequenq
IHI...;....:.------'-'---'--------------,

1111

m

Ill

m

m

DI g It Generated

Figure 2 DTM $RANDOM Output

1111
..;F....:r-=.e..e.q.:..u _e nc...c..:J ___________ __,

1111

Ill

Ill

m

"'

DI gl t Generated

Figure 3 DSM $RANDOM Output

me ..;F....:r....:e_:,_q_u_e_n c--=''--------------,

IHI

Ill

"'
m

m

Digit Generated

Figure 4 MGM/PC $RANDOM Output

80 .II COMPUTING

,m ..;F....:r....:e_,_q.:..u.:..e n::..c:....,J'---------------,

1111

Ill

Ill

Ill

"'

DI g It Generated

Figure 5 MGM/CCSM $RANDOM Output

Frequency
1111 ,-----'-----''--..!.-------------,

1111

Ill

Ill

Ill

"'

Digit Genera~ed

Figure 6 MSM $RANDOM Output

Product Value

DTM-PC 4.3K 5.65

VAXDSM6.0A 6.32

MGM/PC 5.08 10.55

CCSM5.03 29.06

MSM-PC 3.0.8 7.55

Table 3 Chi-Square Values

June 1993

An identical MUMPS program containing this line of code was
created for each of the MUMPS implementations listed in
Table 2. The program was then executed ten consecutive
times from the operating system level for each of the MUMPS
systems used. The following sequencing was used: 1. The
MUMPS program was started using the appropriate operating
system command line reference; 2. the MUMPS program
containing the above line of code was executed and the output
from the program was saved; 3. MUMPS was halted; 4. the
entire sequence was repeated until ten cycles were completed.

The results of this activity point out inconsistencies in the
different implementations. The Datatree DTM-PC test (See
Table 4 in Attachment A) produces an "apparent" random
series on each of the ten runs. The Digital Vax DSM test (See
Table 5 in Attachment A) produces a series of numbers which
begins with zero on each execution, though the numbers after
zero appear to be random. The MGlobal MGM/PC test (See
Table 6 in Attachment A) also produces an apparently random
series of numbers. The MGlobal CCSM test (See Table 7 in
Attachment A) produces several series that are the same or
almost the same on eaclt- run. The Micronetics MSM-PC test
(See Table 8 in Attachment A) generates exactly the same
series of numbers for each execution.

Same Seed Result I first observed what I have come
to call the same seed result, i.e., the MSM type output, with an
early version of MUMPS for UNIX which was developed by
Dave Bridger and implemented on an Onyx C8000 computer.
Subsequently, I experienced the same result with a UNIX­
MUMPS system implemented by PFCS Corporation (I believe
that the latter MUMPS was derived from Bridger's MUMPS)
and running on a BBN C{lO. I am under the impression that
the current PFCS implementation of UNIX-MUMPS no longer
produces the same seed result4• An early version of MSM­
UNIX also produced the same seed result.

In some situations the same seed result might be desirable, i.e.,
simulation activities, but in other situations, i.e., drawing
random samples of telephone numbers or patients, same seed
behavior is not a desirable characteristic. Recently, I discussed
the same seed behavior with an individual at Micronetics
Design Corporations6 and was provided with the following
work-around:

random

June 1993

n a,i,x
;First get time of day from $H
s a=$p($h,",",2)
;Next seed $R with FOR loop

;f i=l:1:a#lOO s x=$r(1000)
Here add your own code ...

It is apparent from our, small review of the $RANDOM
function that we get somewhat different results depending on
what implementation we use and how we use it.

5. Random Number Functions In Other Languages

A number of computer languages, other than MUMPS, imple­
ment random number functions which are relatively easy to
use.

BASIC Language

Various implementations of the BASIC computer programming
language have a function called RND which is similar to the
MUMPS $RANDOM function. The BASIC code which
follows will generate a series of 22 pseudo-random numbers in
the range 0 through 9:

10 FOR R=l TO 22
20 PRINT INT(RND*l0);
30 NEXT

Output from
Program: 7 5 5 2 3 7 0 7 8 7 0 4 8 7 3 9 8 0 9 3 5 7

In fact, each time this code is run it will generate the same set
of random numbers. If you want a different series you must
seed the generator using BASIC's RANDOMIZE statement.
You can initialize the RANDOMIZE statement with the system
clock or with a number. The BASIC code which follows will
reseed the RND function each time it is run and will theoreti­
cally produce (within system limits) a different series each
time the program is run.

10 RANDOMIZE TIMER
20 FOR R=l TO 5
30 PRINT INT(RND*lO);
40 NEXT

I have modified line 10 of the first BASIC program above, i.e,

10 FOR R=0 TO 9999

and run the program to produce the series of 10,000 random
numbers which is displayed in Figure 7. The value of chi-

Al COMPUTING 81

square computed from these numbers is 6.59 which (according
to Knuth's yard stick) indicates that our numbers do not
represent a substantial variation from random behavior.

2 3 1 5 B g

DI git Generated

Figure 7 BASIC Random Output

C Language

C has capabilities similar to BASIC for dealing with random
numbers. The ANSI C standard library has two related
functions for dealing with the generation of random numbers,
srand and rand. Srand is the C complement ofBASIC's RAN­
DOMIZE statement and rand is similar to BASIC's RND
function. Rand returns a pseudo-random integer in the range
0 to the constant RAND _MAX , which is at least 327677

• The
following C program, when compiled and executed, will
generate a series of 22 pseudo-random numbers:

main()
{
int n;
for (n=0; n < 22; ++n)

printf("%d ", rand());

Output From
Program: 0 4310 24759 15029 17457 7174 1541 22245

22259 30628 1 2566 17020 27229 1132 1751
17357 21992 252 12563 2190 13680 22504

82 M COMPUTING

This C program is approximately equivalent to the MUMPS
line:

F N=0:1:22 W $R(32768),""

This C program will generate the same series of random
numbers each time it is run.

The following C program8 makes use of the C srand func­
tion for seeding rand and is driven from the system clock.
This program will generate a different random number series
(within limits) each time it is tun and is similar to our sec­
ond BASIC program above:

main()
{
long int time();
int n;
srand ((int) time ((long int *) 0));
for (n = 0; n < 22; ++r)

printf("%d ", rand());

I have modified our first C program, compiled and executed it,
to generate the 10,000 random numbers which are displayed in
Figure 8.

12 DD

1 DD D

BOD

60D

100

20D

D

Frequency

D 2 3 1 7

Digit Generated

Figure 8 C Random Output

g

Note that we have used the tenths digit of each random
number generated by our C program in our summary and

June 1993

analysis. The value of chi-square computed from these
numbers is 6.45 and referring, once again, to Table 1 we see
that these numbers would not appear to represent a substantial
departure from random behavior.

6. Summary

A comprehensive evaluation of the characteristics of the
random number generators that we have examined would
require a much more rigorous approach to the problem than we
have taken in this paper. Ideally, we would run several chi­
squares for each implementation. In addition, there are a
number of other statistical tests (which we do not have the
space to discuss here) that should be used to evaluate various
characteristics of random numbers. However, even if all of
our random number generators could pass the world's supply
of statistical tests, we would still have to deal with the
inconsistencies that we have found between the various
MUMPS random number generators.

The point here has be&l to demonstrate the inconsistencies
between the various generators. Some of the generators exhibit
the same seed characteristic, i.e., MSM, while others exhibit
behavior which is more difficult to explain but which nonethe­
less is undesirable in a random number generator. The imple­
mentation of a random number generator would appear to be
a straight forward task, yet the complexity of software systems
is such that even software implementations which have
rigorous standards exhibit inconsistencies when examined
closely.

What have we learned? Basically, we've learned that evaluat­
ing random number generators is a complex task and occasion­
ally, there is more than a little magic associated with the effort
Using just the chi-square test we have had only one failure,
i.e., the $RANDOM function in the MGM/CCSM implementa­
tion. It is something of a surprise that any of the 'MUMPS
$RANDOM functions that we looked at exhibit non-random
behavior given that each implementation purports to be ANSI
MUMPS.

BASIC and C, unlike MUMPS, both provide systematic and
reasonably well documented random number functions. In
addition, BASIC and C, don't appear to have the surprises that
the MUMPS implementations exhibit. I believe that MUMPS
vendors should offer a similar functionality in $RANDOM.

June 1993

7. References

1Knuth, D. E. The Art Of Computer Programming Volume 2,
Seminumerical Algorithms, 2nd edition. Reading: Addison
Wesley Publishing, 1981.

2Jain, R. The Art Of Computer Systems Performance Analysis,
Techniques For Experimental Design, Measurement, Simula­
tion, And Modeling. New York: John Wiley & Sons, 1991.

3National Bureau Of Standards, MUMPS System Laboratory.
MUMPS Validation Suite, Version 7.4, 1989 (for microcom­
puters) NTIS Accession No. 2B90-500125.

4Stenn, Harlan, Personal Communication, December, 1992.

5I tested a MSM-UNIX implementation at the 1983 MUMPS
User's Group Annual Meeting held in San Francisco and
shared the result with David Marcus who was present at the
time.

6Bruni, Vince, Micronetics Design Corporation, Personal
Communication, December 8, 1992.

7Kernighan, B. W. & Ritchie, D. M., The C Programming
Language, 2nd edition, Englewood Cliffs, NJ: Prentice Hall,
1988.

8Kochan, S. G., & Wood, P.H., Topics In C Programming,
Indianapolis: Hayden Books, 1987.

Ill COMPUTING 83

N
0

0 3

1 2

2 8

3 3

4 8

s 8

6 6

7 1

8 8

9 0

10 3

11 0

12 8

13 7

14 0

15 1

16 8

17 5

18 3

19 9

20 6

21 4

84 M COMPUTING

Attachment A

Execution

1 2 3 4 s 6 7

7 4 8 3 7 4 8

2 2 9 6 4 3 1

4 3 7 2 7 6 1

1 4 6 8 1 4 6

6 1 9 7 5 0 8

3 7 4 1 8 2 9

3 8 0 2 4 9 1

8 1 1 2 3 6 7

8 3 8 2 7 2 6

6 3 2 1 9 7 5

0 7 4 2 0 7 4

9 7 2 7 2 0 5

8 4 7 9 1 7 9

4 0 7 5 2 8 5

9 4 0 5 1 6 1

4 5 4 3 2 3 2

2 5 9 2 6 9 2

4 4 9 5 0 0 6

5 1 4 6 9 6 8

8 5 8 2 6 2 6

6 4 4 3 3 1 0

0 9 5 2 8 7 3

Table 4 DTM - Ten OS Command Line Executions
Of MUMPS Code F N=0:1:21 W $R(10),!

8 9

5 9

2 9

2 7

5 7

5 2

6 3

7 9

7 8

6 1

4 3

7 4

4 9

8 0

4 1

5 0
\.-

5 4

0 3

9 4

4 7

3 6

7 7

2 9

June 1993

N
0

0 0

1 6

2 2

3 2

4 4

5 8

6 3

7 6

8 8
-,,_

9 7

10 5

11 3

12 5

13 6

14 1

1S 7

16 6

17 4

18 6

19 3

20 9

21 5

June 1993

Attachment A <continued}

Execution

1 2 3 4 5 6 7

0 0 0 0 0 0 0

8 4 9 4 2 1 2

6 8 1 8 1 5 1

3 3 7 6 2 8 2

4 8 0 4 7 1 8

0 2 3 4 5 6 6

6 4 2 5 8 1 4

4 7 7 7 0 3 8

2 6 2 5 3 1 8

4 7 3 6 2 8 9

0 2 0 3 5 7 7

3 1 0 2 0 7 7

1 7 2 7 1 5 8

5 8 3 9 1 2 2

2 0 2 3 6 0 1

8 9 8 1 8 5 4

1 1 4 9 1 2 3

0 8 1 8 7 7 8

6 9 0 7 7 7 5

7 3 0 0 1 2 8

6 6 0 8 8 8 0

2 4 6 2 8 4 0

Table 5 DSM - Ten OS Command Line Executions
Of MUMPS Code F N=0:1:21 W $R(IO),!

8 9

0 0

9 0

6 1

2 4

9 2

6 5

7 5

8 1

9 2

9 8

5 7

5 2

1 2

4 4

4 9

9 2

9 3

3 4

2 0

2 7

4 4

5 5

M COMPUTING 8S

N

0

1

2

3

4

s

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

86 M COMPUTING

Attachment A (continued)

Execution

0 1 2 3 4 s 6 7 8

4 0 6 5 3 9 6 6 0

6 7 4 1 9 8 8 6 1

7 2 7 9 5 3 3 3 4

4 5 5 8 2 6 4 1 8

5 6 8 8 2 8 8 9 2

0 2 5 9 7 0 8 9 9

9 5 6 1 4 8 5 1 5

3 0 3 8 9 0 0 7 4

1 0 8 7 9 2 1 7 6

3 3 0 9 6 5 4 3 1

2 1 8 3 1 8 8 6 5

8 0 9 9 6 5 2 0 2

6 3 2 9 4 2 4 5 7

8 5 6 5 0 5 3 0 6

7 9 1 6 0 1 8 6 0

3 4 0 8 8 1 9 1 1

4 8 9 8 8 5 6 0 6

5 5 3 2 5 8 7 2 0

9 8 6 9 9 6 6 1 3

7 0 9 5 2 7 0 5 1

3 6 4 9 7 5 6 8 4

4 4 9 3 8 8 0 4 9

Table 6 MGM/PC - Ten OS Command Line Executions
Of MUMPS Code F N=0:1:21 W $R(10),!

9

4

0

4

0

8

3

9

5

9

1

2

1

3

1

1
~

4

4

3

0

6

2

1

June 19

N

0

1

2

3

4

5

6

7

8
-,.

9

10

11

12

13

14

15

16

17

18

19

20

21

June 1993

Attachment A <continued}

Execution

0 1 2 3 4 5 6 7 8

3 3 7 2 2 1 1 1 3

3 3 7 2 2 1 1 1 3

2 2 3 9 9 9 9 9 3

2 2 9 7 7 9 9 9 8

8 8 6 5 5 4 4 4 6

7 7 7 2 2 1 1 1 3

7 7 7 2 2 1 1 1 3

7 7 7 5 5 4 4 4 6

1 1 7 4 4 3 3 3 5

I I 2 5 5 4 4 4 6

7 7 3 6 6 5 5 5 6

0 0 8 I 2 0 0 0 2

8 8 8 3 4 2 2 2 4

7 7 9 8 9 7 8 7 9

2 2 4 7 6 6 7 6 6

0 0 9 6 7 2 6 2 7

2 2 7 5 6 2 5 2 6

0 0 4 8 8 9 4 9 8

3 3 1 3 3 4 2 4 3

5 5 6 3 3 9 2 9 4

4 4 8 6 6 4 5 4 7

5 5 2 7 7 5 6 5 3

Table 7 MGM/CCSM - Ten OS Command Line Executions
Of MUMPS Code F N=0:1:21 W $R(10),!

9

3

3

3

8

6

3

3

6

5

6

6

2

4

9

6

7

6

8

3

3

6

7

M COMPUTING 87

N
0

0 7

1 7

2 5

3 6

4 6

5 3

6 5

7 5

8 1

9 9

10 9

11 5

12 1

13 7

14 3

15 9

16 3

17 7

18 4

19 4

20 3

21 7

88 M COMPUTING

Attachment A <continued)

Execution

1 2 3 4 5 6 7

7 7 7 7 7 7 7

7 7 7 7 7 7 7

5 5 5 5 5 5 5

6 6 6 6 6 6 6

6 6 6 6 6 6 6

3 3 3 3 3 3 3

5 5 5 5 5 5 5

5 5 5 5 5 5 5

1 1 1 1 1 1 1

9 9 9 9 9 9 9

9 9 9 9 9 9 9

5 5 5 5 5 5 5

1 1 1 1 1 1 1

7 7 7 7 7 7 7

3 3 3 3 3 3 3

9 9 9 9 9 9 9

3 3 3 3 3 3 3

7 7 7 7 7 7 7

4 4 4 4 4 4 4

4 4 4 4 4 4 4

3 3 3 3 3 3 3

7 7 7 7 7 7 7

Table 8 MSM - Ten OS Command Line Executions
Of MUMPS Code F N=0:1:21 W $R(10),!

8 9

7 7

7 7

5 5

6 6

6 6

3 3

5 5

5 5

1 1

9 9

9 9

5 5

1 1

7 7

3 3
1

9 9

3 3

7 7

4 4

4 4

3 3

7 7

June 1993

