
LANGUAGE &
COMMUNICATIONS

OBJECT ORIENTED MUMPS: A PROPOSED BLUEPRINT

Terry L. Wiechmann
Jerry E. Goodnough

Educational Systems Inc.
211 Vaughn Hill Road

Bolton MA.
(508) 779-2914

Abstract

Object Orientation is not a concept of the future - it's a
paradigm that is being rapidly accepted as a model for
the future. -...

Educational Systems Inc. has developed a fully functional
Object Oriented (00) programming system called
Esi0bjects1 (pronounced 'easy objects'). The goals of this
project were accomplished by extending the M language
specification to include all necessary 00 syntactical
elements. ESI would like to share the results with the M
community. This paper elaborates upon those areas of the
M language and operating environment that were subject
to enhancement.

··Foreword

This paper assumes the reader has a good understanding
of Object Oriented concepts .

The syntax described in this paper evolved as a result of
extensive research and prototyping by ESL It should not
be the focus of attention as you read. Concentrate on the
functionality since it's the most important aspect of 00.

Two general areas will be covered:

•
•

EsiObjects Environment Overview
EsiObjects Language Extensions

Esi0bjects Environment Overview

EsiObjects is an Object Oriented Application
Development Environment. It is built on, and extends,

June 1993

the MUMPS language (hereafter referred to as M). Mis
an ANSI Standard computer programming language that
demonstrates powerful string handling and database
capabilities.

Figure 1 illustrates the layered architecture of EsiObjccts.

Browser
Applications T
Class Library EsiObjects

M 00 Extensions J_
M Implementation

Operating System

Hardware

Figure I: EsiObjects' Architectural View

The full EsiObjects layer consists of several components:

• Object Oriented M Language Extensions that
are implemented through a language
preprocessor and runtime modules.

• A complete Class Library of Foundation
Classes that are used for application
development.

e A complete Application Development
Environment which includes all necessary
browsers and utilities required to develop most
applications.

M COMPUTING 69

I --------------------,,
Object Oriented M Language Extensions

The M language is a powerful string handling and
database language. Fundamental requirements for object
orientation have always been an integral part of M. It is a
weakly typed language and implements late binding of
values to names. It provides comprehensive linguistic
support for the indirection concept which is essential to
writing generic code.

Additionally, M provides for persistence, the ability to
retain objects beyond the lifetime of a job. Persistent
objects are implemented using the concept of global
arrays.

Features missing from the M language for object support
are:

• Object Definition and Typing - The ability to
create a self-contained environment for each
object and protect its contents by enforcing
encapsulation.

• Inheritance Mechanisms - Control and
optimize hierarchical searches for variables,
methods, labels and parameters.

• Variable Scoping - Determines to what extent a
variable is visible by the owning object and
other objects.

• Special Variables and Functions - Special
Variables contain the necessary pointers to
objects required for quick access and flexibility
of coding. Functions return environment values
very quickly.

• Messaging - It's a mechanism by which objects
communicate with one another. It forms a weak
binding between objects.

Building on the fundamental features of M, ESI extended
the M language to include those features needed to
support Object Orientation. This was accomplished by
writing a preprocessor. The preprocessor implements the
following:

• Parses ANSI Standard M code and identifies
syntax errors.

• Expands Object Oriented extensions to Standard
Mcode.

• Optimizes hierarchical searches.
• Compiles runtime messaging system.
• Provides runtime support and interpretation.

70 Al COMPUTING

In keeping with the nature of compilation in all M
systems, calls to the preprocessor are hidden from the
programmer.

Class Library and Applications

In Figure 1, the Class Library and Browser Applications
are application levels. Once the language extensions are
in place, the programmer has the necessary linguistic
tools to develop a full Class Library. In a trnly
comprehensive 00 system, the Class Library will contain
an extensive array of Class definitions. These definitional
components are then used to develop full applications.

The Browser Applications within the EsiObjects
environment form a full Object Oriented development
environment based upon a windowing environment.
However, these layers can contain more primitive
development tools.

EsiObjects Language Extensions

This section outlines the syntactic extensions to the M
language required to implement the Object Oriented
paradigm. These extensions are not ANSI Standard.
They are the result of extensive research and prototyping
by ESI.

The extensions can be organized into six groups:
\-

• Object Definition
• Types of Objects
• Messaging
• Label Inheritance
• Variable Scoping and Inheritance
• Special Variables and Functions

Obiect Definition

As outlined previously, the M language contains a good
foundation for object orientation. The fundamental
linguistic capabilities of the language provides a base for
implementing 00 structures and functions. Fundamental
to all 00 is the concept of an object - its definition and
contents.

June 1993

I
I
l
l
l
'

I

An object is a unique, self-contained entity that shares
much in common with the standard M partition. It
contains:

•
•
•

Identity
State
Behavior

Identity is the attribute that makes one object unique
from another. Within the computer system it is identified
by a unique Object Identifier (OID). When a new object
is created, it is assigned an OID.

State is the sum of all static and dynamic properties of
the object. These properties are stored as values under
symbol names within the object. Therefore, a significant
part of an object definition is devoted to a symbol table.
EsiObjects symbol names conform to the Standard M
specification. However, they may be up to 31 characters
in length. The M portability requirements for symbol
names should be extended to permit more meaningful
names. ...,,.

Behavior is how an object responds to a state change as a
result of receiving a message to do something. Behavior
is contained in blocks of M code that are an integral part
of the object's definitional component - a Class. These
blocks of code are known as methods. Methods are
executed as a result of the object receiving a message to
do something. A method name maps to an M entry
reference which is stored in the M routine directory.

Figure 2 illustrates an object and its components.

Method

Method

Method

Figure 2: Illustration of an Object Environment

The header area containing OID and Object Definition
are internal to the object. The OID gives an object its
identity. As stated previously, it is a unique identifier.
Uniqueness of course is a complex issue when dealing
with concurrent and distributed systems. The Object

June 1993

Definition area contains overhead information about the
object, such as pointers, security codes, etc.

An OID is quite simply a partial symbol name that can be
used in subscript indirection. The OID is an internal
handle on the object and can be used by the M
programmer as an object pointer.

Methods are terminating points for messages. A method
contains the code called when an object receives a given
message. They are the only mechanism that can access
the object's symbol table and manipulate variables in the
table. Protecting an object's data is called encapsulation.
The sum of all methods gives an object its total behavior.

Having illustrated and explained the component parts of
an object, it should be apparent to the astute observer that
there is a great deal of overlap between an object concept
and an M partition. The partition exists as a definition in
the M implementations code. When a user signs onto the
system, the system stamps out an instance of the partition
called a Job. A job is given a unique identifier which
resides in the special variable $JOB. Within the partition
resides a symbol table and a pointer to the UCI or
Namespace that contains the global data and routines.

This concept must be slightly enhanced and made
available to the programmer at a finer degree of
granularity. In other words, the programmer must have
control over creating, manipulating and deleting object
environments within the context of an M job. This
obviously can be viewed as a recursive definition of the
object concept.

The M array structure could be used to implement an
object environment. Unfortunately, this raises object
environmental issues to the M programmer level. The
application code would have to enforce encapsulation
among other maintenance tasks that are better delegated
to the operating environment.

Types of Objects

Within any object oriented system, two types of objects
exist:

• Instance
• Class

An instance can be viewed as a real world object. It has
identity, state and behavior.
Let's use human beings as an example of the two types of
objects. Viewing all human beings, we notice that we all

Al COMPUTING 71

share common characteristics and behavior. In a
computer model of an object oriented system, rather than
storing these common characteristics redundantly, as is
done in humans, they are stored in a definitional object
called a class object. The class object contains the
information and methods necessary for creating an
instance of the class, for example, a specific human.
Since the common characteristics of the instance are
stored in the class object, a pointer within the instance's
overhead area is used to keep track of the class of objects
it belongs to. This pointer forms one link in an
inheritance path.

Instance Object Class Object

Figure 3: Instance and Class Types of Objects

Figure 3 illustrates an instance and a class object linked
together by a pointer. The pointer is known as an
inheritance pointer. It is used to link the specific object to
the more general object that contains its definitional
symbols and methods. It is then used by the system to
make those common characteristics and methods
available to the instance. It provides an inheritance path
for all instances to the class object that created the
instance.

Notice that the methods are attached to the class object.
Methods are always stored with the class and never with
the instance. However, symbols are stored at all levels of
the hierarchy and are appropriately named. Instance
symbols are stored at the instance level and class
symbols are stored at the class level.

Carrying this concept to an extreme, Figure 4 illustrates
what a generic hierarchy would look like.

A class hierarchy exists in most object-oriented systems.
It is a further separation of common characteristics and
methods the higher up the definitional structure, the
more general the characteristics and methods become.
All classes and instances below inherit the characteristics

72 Al COMPUTING

and methods. The further down the tree, the more
specific the objects. An instance is the most specific
object.

General Class Structure

Specific

Instance

Figure 4: A General Inheritance Hierarchy

Class objects (shaded boxes) are linked together to form
an inheritance tree. Since class objects contain common
methods and symbols, the concept of inheritance is used
to make these entities available to any o~ject further
down the inheritance tree. For example, if an instance
object receives a message to execute a method, each class
in the instance's inheritance path is searched for the
method. When it is found, the method is executed. In
reality, actual searching does not take place, searches are
compiled out. \,-

Messaging

Objects communicate with each other by messaging. If
object A wants to know something about object B, it must
send B a message. The message is actually a method and
object selection mechanism that carries along with it a set
of parameters that contains specific information about the
message. The ABCL/12 message syntax heavily
influenced the design ofEsiObjects' message syntax.

Messaging forms a weak binding between two objects. It
respects the encapsulation of other objects.
A special EsiObjects syntax exists for a message as
follows:

[Method. Object.KeywordList] (Parameter List)

Messages always produce a value much like an extrinsic
function within the M language.

June 1993

The Method and Object within the square brackets,
separated by the period, identifies a specific method to be
executed within the specified object. Functionally, it acts
like an M entryref, where the label and routine name
identify an entry point into a routine. In this case, the
method object construct identifies a delivery point for the
message in an object environment. To use a postal letter
analogy, the entire message is analogous to the envelope
and the method.object portion of the message is the
address label.

Method and Object can be prefixed with an underscore
character to tell the compiler that the method and object
are in the Class structure. For example, the message
LNew._ WindowObject](Name="MyWindow") would
create a new object MyWindow using the definitional
class WindowObject.

The KeywordList is a list of keywords that are separated
by commas. These keywords apply to the message only.
They are not meaningful to the recipient of the message.
Message keywords-can be used for a variety of functions
such as specifying concurrency parameters, activating the
debugger, etc.

The ParameterList is a list of parameters separated by
commas. Each parameter may be a Keyword or Keyword
Alias that maps to another keyword. Positional
parameters were initially used with keywords in early
prototypes of EsiObjects, however, they were dropped.
Keywords are much more flexible (non-positional)
although they must be defined as a part of the method
prior to compilation. This is an implementation issue.

Keywords and their aliases are created, by the
programmer, through a parameter browser (or utility) for
each method within a class. The programmer then uses
them in the parameter list. When the method is executed,
the keywords and values are instantiated into parameter
variables which are described in the next section.

Parameters contain the specifics of the message that are
meaningful to the receiving method. In terms of the
postal letter analogy, the parameters are analogous to the
contents of the envelope.

Figure 5 illustrates the concept of messaging between
objects. In this example, the message PrintReport is
being sent to the Printer object. Specifically, Printer is
being told to print INVOICES by specifying the keyword
Report.

June 1993

Print Object Print Class Object

[PrintReport.Printer](Report='INVOICES')

Customer Object

Figure 5: Messaging between Objects

Method Inheritance

Methods, as e:-..1)lained, are message names. Methods are
attached to classes within the class library hierarchy and
are mapped to a block of M code (routine). The concept
of an M routine is simply viewed as a physical storage
mechanism. The logical concept of a method maps to
that physical entity.

Within any object-oriented system that supports
inheritance, the concept of polymorphism is a very
powerful feature. One form of polymorphism permits the
same method names to be used throughout the class
library (one per class). Within the inheritance path of a
class, the first class with the message's method name will
be executed. Objects of different classes implement the
same methods differently, behaving in a manner
appropriate to their class.

Figure 6 illustrates the concept. A class inheritance
hierarchy is shown for a Parts - Tires relationship. An
instance of the Tires exists named X26. Notice that when
X26 receives the message

[AddElement.X26](Quantity=10)

the system will search the inheritance path for the
method name AddElement. The first method found with
this name will be executed. In the case illustrated,
AddElement method of Tire's class will be executed first.

M COMPUTING 73

Parts Class

AddE!ement

Tire Class

AddElement

D*Main

Q

*Update;

[AddElement.X26]Quantity=10)

*Main;

DLock

D *Update

DUnlock

Q

Figure 6: Example of Label Inheritance

Assume that AddElement of Tires did not exist. In this
case, AddElement of Parts would be executed. Inserting

· the method AddElement at the Tire's class overrides the
AddElement above it. It is this capability that permits
code to be specialized to a particular application vendor
or user site's needs or any other means of artificial
separation. This same capability is extended to symbol
names which will be discussed in the Variable Scoping
and Inheritance section.

Label Inheritance

If we can control the generalization and specialization of
whole methods by overriding names, it makes sense to
extend this capability to labels within the body of a
method. EsiObjects does this by letting the programmer
declare a label as private or public within the inheritance
path.

Again, look at Figure 6. Notice that within the
AddElement method of Tires, a label Update is preceded

74 Ill COMPUTING

by an asterisk (*). This tells the preprocessor that this
label is to become public to any method within the class's
inheritance path. Labels that are not preceded by the *
are treated as normal M labels and are private to the
method.

Looking at the Parts class, notice the D *Update
command. The * informs the preprocessor to compile in
a lookup for the public label Update.

To understand how this works, let's walk through the
example in Figure 6.

I. Starting at the bottom of the class structure is an
instance of the class Tires called X26 which is a
particular type of tire.

2. A message is sent to X26 which tells it to add the
value 10 to the variable Quantity.

3. Upon receipt of the message, the inheritance tree is
searched for the method AddElement. (An actual
search may not take place since all method
inheritance searches should eliminated by the
compiler). The method AddElement at the class
Tires is found and executed.

4. The first line of code is D *Main. The asterisk
indicates a public label. Execution of this DO
argument forces an inheritance lookup within all
methods named AddElement ~ly.

5. The Main method will be found in the Parts class
and executed. The first line of code contains a D
Lock. The lock label is private. A normal M label
search will take place within the body of the routine.

6. Next, the D *Update will be executed. Again, it is a
public label. An inheritance lookup will be
performed within the context of all known methods
named AddElement that are in the inheritance path.

7. The Update method will be found in the Tires class
and executed. How the parameter Quantity=] 0 is
passed on to the Update method is not shown. This
will be covered in the next section on Variable
Scoping and Inheritance.

8. Once the Update subroutine finishes, control is
passed back to the Main routine in Parts where the D
Unlock is executed. Of course, Unlock is private and
will reside within Main.

June 1993

Notice what the inheritance structure and lookup
mechanism does for you. Executing different blocks of
code from a main routine no longer requires conditionals
to determine which labels to execute and eliminates all
extraneous branching conditions. This is a subtle, but
powerful feature. The structure of the routines is built
into the class structure. It's a behavioral structure based
upon the structure of the class abstraction levels.
Correctly designing the class structure is very important.

Variable Scol!!!!,g and Inheritance

By definition, a system that enforces encapsulation, as
EsiObjects does, requires an explicit method of scoping
variables.

In non-object oriented M systems, variables are scoped at
three simple levels. First, local variables are confined to
the M job's context. This simply means that other jobs
cannot access these variables. Secondly, within this
context, the scope of all variables is across all execution
domains unless explicitly confined to a specific domain
by the NEW command. Third, the scope of a variable can
be extended across a class of users by using globals.

An Object Oriented M system must implement a
completely different form of scoping. The object
definition and the concept of encapsulation dictate
scoping.

First, locals and globals are not used as a scoping
mechanism. Globals are used to implement persistence.
An object is persistent if it lives beyond the lifetime of a
job. Obviously, local variables are then referred to as
non-persistent. Therefore, the local variables are used to
temporarily store an object and its variables - where an M
global is used to store an object until it is explicitly
deleted.

Variable scoping refers to accessibility to one object's
variables by another. Notice the Symbol Table in the
object diagram of Figure 2. Only that object can refer
directly to these symbols. Other objects can only obtain
their values by requesting them through a direct method
call to the object.

June 1993

Variables can be confined to several levels in EsiObjects:

• Temporary
• Instance
• Class
• Parameter
• Universal
• Named Pool

Figure 7 illustrates the concept of variable scoping in an
object environment. Temporary, Parameter, Instance,
Class and Universal scopes are illustrated (in italics)
relative to the objects.

Instance Object Class Object

Universal

Figure 7: Scoping of Variables

Because EsiObjects added the concept of variable scoping
to the M language, a syntactic mechanism had to be
added to implement the concept.

According to portability rules of the M language, a
symbol must start with an alphabetic or percent (%) sign
followed by 1-7 alphanumeric characters. For example:

DATE="09/0l/92"
¾system="OMEGA"

In the early releases of the M language, symbols with the
leading % character were conven_tionally reserved for
system utilities. It implied a form of scoping that was
enforced only for global symbols by some M
implementations.

M COMPUTING 75

EsiObjects extended the % symbol syntax to the
following:

SCOPE%NAME(S1,S2, ... Sn)

where:

NAME is the symbol name and Sl, S2, ... Sn are the
subscripts.

SCOPE is case sensitive and identifies the scope of the
variable. It can be:

T Temporary
I Instance
C Class
p Parameter
u Universal
N Named oool

Table 1: Variable Scoping Codes

Scope permits the programmer to visually determine the
scope of a variable in the source code. Additionally, the
length of the variable has been extended to 31 characters.
For example:

S lo/oCustomerName="Doe, John"

This example creates an instance variable whose scope is
confined to the currently active object.

Temporary variables are confined to the block of code
between the first occurrence of the variable and the next
explicit or implicit QUIT command, but not into the
method body of any sub-message.

Instance variables are confined to the scope of the object.
They are accessible by all the object's methods but hidden
from all other objects.

Class variables are confined to a class object. A class
object contains the definitional components required to
create other objects known as instances.

Parameter variables are identical to temporary variables
in most respects. They are created by the compiler from a
parameter keyword. Keywords are defined for a method
like a temporary, its scope is confined to the execution of
the method - from the entry point to the QUIT (implicit
or explicit) that terminates the method's execution. If the
method sends a message to another object, the parameter

76 M COMPUTING

variables do not extend into the body of the recipient of
the message.

Referring back to Figure 6, the parameter on the
message

[AddEJement.X26] (Quantity=! 0)

contains the keyword Quantity which carries the value
10. Quantity must be defined as a keyword belonging to
the method AddElement.

At runtime, Quantity becomes a parameter variable
which is treated like a temporary variable.

Universal variables are available across the scope of all
objects. They are universally accessible by all methods of
all object types - instance or class. Universal variable use
is discouraged. They violate the concept of encapsulation
which should be guarded against in an object oriented
system.

Named Pool variables are a way of sharing variables and
values between objects. A named pool is really an object.
Remember that an object has its own symbol table that
may contain symbols. Multiple objects may have access
to a named pool. Additionally, Named pools may be
linked into hierarchies such that the variables are then
available through the normal inheritance paths.

This construct is a very poweitµl feature of the
EsiObjects system. It permits the appiication programmer
to create inheritance driven symbol tables that are
organized by a particular relationship. For example, the
Class relationship is often referred to as a kind-of
relationship. Other relationships exist such as a part-of
relationship. The point is, the programmer must have
this generic capability to build any inheritance
relationship required by the application. Named Pools
fulfill that requirement.

Special Variables and Functions

Special variables and functions have been added to
EsiObjects. Special variables hold important values the
programmer will need to access. Most special variables
hold pointers to commonly accessed objects. Some of the
most common special variables available in the

June 1993

EsiObjects' system are:

$ZSELF OID of the object's caller.
$ZSUPER OID of the object's super-class. That

is, if the current object is an instance
of a class, $ZSUPER points to its
super-class

$ZLAST contains the OID of the last object a
message was sent to. It defaults to
$ZSELF.

$ZCALLER OID of sender of the current
message.

$ZRETURN Contains the return value of a
message.

These are only a few of the special variables implemented
in the EsiObjects' system.

A few functions have been added to selectively access
values available to the programmer. Some of the
variables are listec11,elow:

$ZEXISTS(expr) returns a 1 if the object
specified by the parameter
exists. The expr is an
expression that must evaluate
to an OID.

$ZGETPARM(expr) returns the value of the
keyword specified in expr.
The expr must evaluate to a
keyword.

Not all of the special variables and functions have been
listed. Additionally, it should be understood that many of
them can be written as extrinsic functions.

Summary

The ANSI Standard M language contains a natural
foundation for Object Orientation. At its current level of
definition, object based applications can be built.
However, to implement a full object oriented
environment, the following enhancements must be made
to the language and operating environment:

•
•
G

•

June 1993

object environment definition
enforcement of encapsulation
fast inheritance searching of methods and
symbols
full messaging capabilities

1 Wiechmann, Terry and Goodnough, Jerry, EsiObjects:
An Object Oriented Application Development
Environment, MUMPS Computing, Sept. 1992
2A. Yonezawa, Shibayama E., T. Takada, Y. Honda,
Modelling and Programming in an Object-Oriented
Concurrent Language ABCVJ, in "Object-Oriented
Concurrent Programming" edited by A. Yonezawa and
M. Tokoro, MIT Press, 1987.

l!l~lil

11 ATrENTION COMPUTER I!
I INFORMATION ~Y~TEM~ MANAGER: I
I ~ _ls _y(?:ur department in need of I
:; M(~) professionalB to work on either a I
'I leffiP2raty or ~ent basis? fuNQy Ernorr I I AND COMPANY, s~i~ in ~anent and I
I ~ placement of M(MUMPS) I I profess1ona1B of all levels Throughout the U.S. I
11 Our aim is to match the protesional skills I I and experience of the candidate to I
I your specifications. I
11 for more information Please Conte.cl: Ii
I I I! ~ ~ I HENRY 70 Walnut &lreet I
I ~LLIOTT Wellesley, MA 02181 I 'I L · · 617 239-8180 I I rd COM.PANY f AX 617 239-8210 i
I ~
~~

IA COMPUTING 77

