
DISTASO
AWARD

The Effect of Language on Software Costs

Susan H. Johnston
Robert Morris College

Coraopolis, Pennsylvania

Abstract

The choice of progtamming language for software
development can have a great impact on costs for both
development and maintenance. In the recessionary climate,
with the emphas~ on cost efficiency, assessing the effect of
the various features of a programming language on cost,
efficiency and productivity seems prudent. The entrenched
traditional third generation programming language, COBOL,
is compared and contrasted with MUMPS, regarding the
structure of programs, operating environments, language
extensions, data types, sorting, syntax and functions. The
flexibility of MUMPS in these areas is shown. MUMPS'
superior performance in a benchmark test conducted for
creating a database is explored. MUMPS' lack of
requirements for language extensions in accessing a database,
but ability to accept extensions such as SQL, are contrasted
with COBOL's requirements for such language extensions.
MUMPS' language features have a positive effect on
productivity, efficiency, and cost reduction which can
ultimately affect a company's competitive position in the
global marketplace.

Introduction

When reading most current computer literature, one is struck
by the trends toward downsizing, rightsizing and outsourcing.
One corporate official predicted that at least fifty percent of
their mainframe applications will be rewritten over the next
five to ten years.3 In the recessionary economy companies
are attempting to reduce both hardware costs and software
maintenance costs. Chief information officers are
questioning the way that data processing has traditionally
been done. Software development and maintenance costs are
a product of the programming language used for
development, in addition to management attitudes toward
development and maintenance. What role do programming
languages play in this upheaval in the data processing
industry?

June 1993

In speaking of programming languages, the general public
has heard about FORTRAN, COBOL, C, and PASCAL,
among others, but many people have not heard of the
language MUMPS, also called "M". Considering that M was
the third language standardized by the American National
Standards Institute (ANSI) after FORTRAN and COBOL, it
is surprising that it is not better known.2 COBOL (Common
Business Oriented Language) has traditionally been well
known for its widespread use in business applications. M has
been thought of as a medically-oriented language since it was
originally developed in a hospital setting for use in the
medical field, but M is widely used in other business
applications such as inventory control, accounting, and
manufacturing. M has been used to develop rule-based expert
systems.17 M has also been promoted as a rapid prototyping
tool.

Productivity Comparisons

In any computerized system data are stored, retrieved and,
depending upon the application, manipulated to some degree.
Methods of accessing and manipulating data vary widely in
their efficiency due to the manner or structure in which the
data are stored. Productivity and efficiency in the processing
of data are considered of primary importance in computer
systems.

In a benchmark study done by a department store in Spain
when accepting bids for its computer system, M was one of
the competing languages and database systems.
Measurements were taken for disk occupation, processing
speed and number of lines of code required. The languages
compared. were MUMPS, RPG III, COBOL, BASIC and
FORTRAN. During the test a database had to be created
from scratch and a long and short query run. "On the
Database Creation test, MUMPS was from 30 to 7 times
faster than the conventional systems. The MUMPS database
needed only between 1/4 and 1/2 of the disk space used by the
competitor's databases." 1 M compared very favorably in the

Al COMPUTING 39

number of lines of code required because it needed less than
one third of the lines of code than the other systems in the
study. MUMPS was tested against its competitors on both 32-
bit and 16-bit computers and was beaten on the 32-bit
computer only once.

The test between MUMPS and COBOL was run on the same
computer hardware, so that just language differences could be
taken into account. In database creation MUMPS took
thirteen minutes while COBOL took 2 hours. For the long
database query MUMPS took 1 hour 37 minutes versus
COBOL's 2 hours 35 minutes. MUMPS' database system
occupied 5.4 megabytes of disk space versus COBOL's
database system which occupied 21.7 megabytes, over four
times more than the MUMPS database system. MUMPS only
required 183 lines of code versus COBOL's 1050 lines.1

MUMPS
Database creation 13 minutes
Disk space occupation 5.4 meg
Lines of code 183

COBOL
2 hours
21.7meg
1050

Number of lines of source code has been one measurement
used in software metrics as a correlation for initial
programming time and maintenance time.18 "Program sizes
in COBOL are typically 20 to 30 times the size of an
equivalent MUMPS program. This has an obvious effect on
disk storage requirements, but an even larger impact on
memory requirements, computer power and execution time." 7

More recently Digital Equipment Corporation, using Digital
Standard MUMPS (DSM), "received the highest rating in a
benchmark testing transaction processing performance."6
The Transaction Processing Performance Council (TPC)
Benchmark A test is an industry standard test which
measures the number of transactions per second and the cost
per transaction per second. In order to qualify for a
Benchmark A test, strict compliance with rigorous conditions
must be kept and presented to the TPC.8 Digital's
participation in the TPC-A test in 1990 "established DSM as
the top achiever in transaction processing speed and cost
efficiency. n6

What makes M quicker in database creation and access while
occupying less disk space and using less lines of code? What
features does M possess that COBOL does not, or vice versa,
that make M more cost effective?

40 Al COMPUTING

Contrast the Features of COBOL and M

Different programming languages vary as to the structure of
the programs, operating environments, language extensions,
data types, sorting, syntax and functions. Since M and
COBOL were among the first languages to meet ANSI
standards they will be compared in each of these areas, in an
attempt to assess what made M more cost efficient and
productive in the above tests. Positive and negative aspects of
each language will be contrasted.

Program Structure

Older COBOL-74 programs require the declaration of four
divisions: Identification, Environment, Data and Procedure.
The Identification Division documents the program. The
Environment Division, which consists of the Configuration
Section and the Input-Output Section, links the COBOL
program to the system environment in which the program
will be run. The Configuration Section identifies the
computers used to compile the source program and run the
object program. The Input-Output Section describes all of the
logical data files and associates them with physical files
through an input/output device.

The Data Division contains two sections, the File Section and
the Working Storage Section, which are used to identify
logical files and data to be used within the program. The File
Section contains file description entries for each input/output
file and sort-merge-file used in qi_e program. Record
description entries describe logical records within files. More
than one record description entry can be specified for the
same storage area. The Working Storage Section declares
other fields necessary in the processing of the program such
as total fields, status condition fields and additional file and
record specifications. The Data Division may also contain a
Linkage Section which identifies data passed from another
program. The Procedure Division contains the program logic
using various reserved words in COBOL statements. There
are over 300 reserved words in COBOL which cannot be used
as user-defined variable names within a COBOL program and
must be spelled out in full in order to use them. This makes
COBOL a lengthy, wordy language, but the English-like
nature of the language makes the program logic fairly easy to
read and somewhat self-documenting. (See example
following for divisions of COBOL program. See Exhibit A
for a complete COBOL program.) ·

June 1993

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SAMPLE-FILE
ASSIGN TO INFILE.

DATA-DIVISION.
FILE SECTION
FD SAMPLE-FILE
01 SAMPLE-RECORD
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

The newer COBOL-85 standard makes optional many of the
prior requirements. The Author, Installation, Date-Written,
Date-Compiled and Security paragraphs of the Identification
Divisions are now obsolete. The Environment Division and
the Configuration Section are now optional to enable the use
of nested programs and subprograms. The Source-Computer
and Object-Computer paragraphs of the Configuration
Section are also optional. User-defined words can be
identical to system-names in COBOL-85 because the
COBOL-85 compiler is able to differentiate between a user­
defined word and a system-name based on the context in
which it is used.

The Data Division is also optional, in addition to the Label
Records and Data Records clauses in order to allow for nested
programs and subprograms. The nested subprograms could
optionally contain the Environment and Data Divisions as
programming circumstances dictate, or they could access data
in the main program that is declared as global. The record
clause can now be coded RECORD IS VARYING IN SIZE
FROM nn TO nnn CHARACTERS DEPENDING ON user­
defined variable, to allow for variable length records, where n
stands for an integer. The reserved word Filler is optional
also. The Procedure Division is optional in the COBOL-85
standard in order to permit prior compilation of the first three
divisions for correct syntax.

M programs do not require the declaration of any divisions
within a program. An M variable can be defined, used and
deleted within the same line. M is designed to run on various
types of hardware, from mainframes to microcomputers and
personal computers. It can be a standalone operating system
or run under various operatinf systems such as VM, VMS,
UNIX, AOS, DOS and OS/2. The type of system is never

June 1993

declared within an M program. Source and object computers
do not have to be declared.

M commands can be abbreviated to one letter (i.e. SET - S,
HANG - H) and functions can be abbreviated to two or three
characters (i.e. ORDER function - $0, LENGTH function -
$L, TRANSLATE function - $TR). In general, there are no
reserved words. For example, the letter S is not restricted by
M to indicate the SET command, but can also be used as a
variable. M interprets the context in which a letter is used, as
to whether it is interpreted as a command or a variable name.
M does not have any restrictions as to variable names,
because the restriction of reserved words does not apply.

Operating Environment

COBOL requires a command language which constructs
access methods for files. In the IBM environment the
command language depends upon the operating system. JCL
(job control language) is used under IBM's OS/MVS to
specify every file used in a COBOL program. IBM's
VM/CMS operating system uses the command language CMS
(Conversational Monitor System) which is designed for
interactive processing. In the IBM environment an additional
language to COBOL is needed just to process file data.
COBOL can be made interactive to the user through
additional language extensions such as CICS, but the
COBOL-85 standard does not provide for interactive
programs. "Computer hardware requirements are much
higher for COBOL than MUMPS."7 This statement is true
because COBOL usually runs on large mainframes or
microcomputers with substantial added RAM. COBOL is a
compiled language because it compiles it source code into
object code which is stored and executed.

M's unique syntax includes a job control language, linkage
editor and database management system, and a data
communications monitor, in addition to an application
programming language.13 It does not need additional
languages to access the data in its global variables (equivalent
to files), because the access method is built into the language.
Standard M programs are portable from one environment to
another, because they do not need the support of additional
languages and operating systems.12 Individual fields within
records can be accessed without explicitly stating the file
structure, including fields and field lengths. The field lengths
within a record may be of variable length without affecting
M's accessing method. M is usually run on minicomputers or
microcomputer networks in a multi-user environment for

Al COMPUTING 41

interactive database applications. M is an interpreted or a
hybrid compiler-interpreter system.

Lani:Uage Extensions

Without any language extensions for accessing database
management systems, such as IMS, CODASYL, IDMS,
Btrieve and SQL, COBOL is capable of accessing sequential
files, indexed sequential files and hash files. There is no data
independence using traditional COBOL programming due to
the explicit file and record declarations necessary within
programs.4 In order for COBOL to access a database
structure, additional code embedded into COBOL is
necessary. This necessity for embedding code, such as SQL,
IMS, CODASYL or DB2, adds the capability for accessing
related database records, but adds additional code to an
already wordy language. The various language extensions to
COBOL make it capable of accessing various types of
databases, such as hierarchical, network and relational.

One of M's great strengths is that a database management
system, including storage and retrieval facilities, is an
integral part of M. M uses subscripted global and local
variables, which are built into the language, instead of
external input/output files to store and retrieve data. M's
permanent storage of data in its database system is
accomplished through global sparse arrays, which use a
hierarchical tree structure. 2 Sparse arrays promote efficient
utilization of memory space through allocating space only for
elements of the array with data. Prior allocation of space is
unnecessary because space is allocated as needed for data
storage. Global variables are shared by various users and
persist after a program or interactive session has finished.
Both local and global variables, including fields, do not have
to be declared explicitly in a division at the beginning of a
program. They can be created, used and deleted (KILLED) in
the same line of M code. Globals are not opened and closed
and can be accessed sequentially or randomly. Subscripts of
global or local arrays can be numeric or string values.

Language extensions to M have been made to allow M and
other systems to share data. SQL and M have been combined
to allow M access to data stored in a relational structure. The
combination of the two languages has increased productivity
and efficiency, in addition to allowing access to both
hierarchical and relational databases. An 80% increase in
storage efficiency was gained in one ap~lication converted
from COBOL to M combined with SQL. Additionally, an

42 Al COMPUTING

interface between FOCUS and Digital Standard MUMPS
(DSM) allows M applications to access data from other
systems such as ADABAS, DBMS, RMS, Rdb, Ingres,
Oracle, Sharebase, Sybase and Teradata using SQL.9 These
extensions provide access to M's hierarchically stored data
along with data stored in other formats, such as relational,
optimizing data sharing and access. These language
extensions to M should mute the criticism that M is not
compatible with other systems.12 The Open MUMPS
Interconnect which provides for a standard protocol for
accessing databases across a network is currently a Type A
extension.

Data Types

COBOL data is declared as numeric, alphanumeric or
alphabetic in the Data Division of the program using
PICTURE clauses. Each record must be explicitly defined as
containing specific fields with definite lengths. The
REDEFINES clause is used in COBOL to assign additional
data names or PICTURE clauses (data types) to a specific
area of storage. In this way a field that is defined as
alphanumeric can be redefined as numeric and calculations
can be performed on the data in the field. COBOL-85
permits the redefined field to be longer than the field being
redefined. COBOL-85 also permits the PICTURE character
string to be continued over two lines of source code. In
COBOL-85 the editing symbols of a comma or decimal point
may be the nghtmost character in a PICTURE clause as long
as the period indicating the end of the sentence immediately
follows the rightmost decimal pOiJ:\t or comma.

05 INVOICE-NO PIC 9(8).
05 INVOICE-NO-X REDEFINES INVOICE-NO.

10 INV-NO-X PIC 9(7).
10 FILLER PIC X.

05 RETURN-NO REDEFINES INVOICE-NO
PIC X(8).

In M, all data are typed as character strings with no explicit
declarations of specific types of data necessary. The context
of the operation defines whether a particular field is
interpreted as a string, a numeric value or as a truth value.
Placing an arithmetic operator (addition "+", subtraction "-",
multiplication "*", exponentiation "**", division "/", integer
division "\", and modulo "#") before a variable causes it to be
interpreted as numeric. The expression +" -1.25" would be
interpreted as -1.25 and +"ABC" would be interpreted as 0,

June 1993

•

'S
!r
;,

e
a

thus calculations can be performed on any expression. M has
a function $FNUMBER which will format a number for
display with signs, decimal places and parentheses as
requested within the function. A display record with explicit
fixed length field declarations is not necessary in M. String
operators and functions (contains"[", follows"]", equals"=",
concatenate"_", $LENGTH, $EXTRACT, $FIND, $ASCII,
$CHAR and $PIECE) will interpret any variable as a string.

Sorting

Sorting files for the manipulation of data for a report or on­
line presentation consumes a significant amount of system
resources in conventional computer systems. M's sort
requires no time consuming file declarations, making it quick
to use. COBOL follows the more conventional sorting
methods.

The traditional sort ,within a COBOL program involves
setting up a sort definition for the sort file, including explicit
field definitions, in the File Section of the Data Division. The
sort must be spkified in the Procedure Division by
identifying the input and output files, the key to be sorted on
and whether the sort will be ascending or descending.
COBOL-85 eliminates the requirement for specifying a
section name for an INPUT or OUTPUT PROCEDURE on
SORT and MERGE statements. The requirement is for a
procedure name which can be either a paragraph name or a
section name. A new clause WITH DUPLICATES IN
ORDER has been added that will return records with
duplicate sort keys, in their original order in the file, first in,
first out. The sort file definition can contain the clause, IS
VARYING IN SIZE FROM nn TO nnn CHARACTERS
DEPENDING on user-defined variable, to allow for variable
length sort records (n stands for integer).

M's collating sequence starts with null, followed by canonic
numbers then all other strings. M's globals automatically
store information in this collating sequence.19 To retrieve
information in ascending or descending order is simply a
matter of using the ORDER function ($0). No additional file
and record definitions have to be explicitly declared. To
retrieve information from a global in the order of a different
key, an index can be created (such as name, social security
number) within a program and the data will be retrieved by
the ORDER function, using the new index, in name order
instead of social security number order. The index can be
deleted immediately after use, so the services of a database
administrator to create a different key are not necessary.

June 1993

Syntax Comparisons

Syntax variations between languages contribute to the ease of
programming, productivity and efficiency of the various
languages. Differences between M and the COBOL-85
standards are discussed below.

COBOL's MOVE command is equivalent to M's set
command. The command in COBOL would be: MOVE X to
Y. In M the command would be: SET Y=X. COBOL-85
now permits a numeric edited field to be moved to a numeric
field or another numeric edited field. In order to permit
acceptance of numeric data from a terminal, the MOVE
command de-edits the numeric-edited field prior to moving
the data. All of the editing characters such as commas,
decimal points, dollar signs and positive or negative signs
would be removed from the data and the remaining numeric
data values moved to the unedited field. M can set any
variable equal to any value and has no limitations on
movements between fields. M's variable length fields do not
restrict movements between fields, because all fields can be of
varying length strings.

COBOL's PERFORM is similar to M's DO command because
both commands are used to transfer control to labeled sections
of code. Control is returned in both cases to the statement
following the DO or the PERFORM. The new in-line
PERFORM statement of COBOL-85, which eliminates
transfers of control to performed procedures, compares with
M's argumentless DO command with block structuring.
Instead of specifying a procedure name, the statements coded
in line after the PERFORM or the DO will be performed. An
END-PERFORM terminates the PERFORM statement and a
QUIT terminates the DO statement.

PERFORM
(statements to be performed)

END-PERFORM.

DO
statement to be performed
statement to be performed

QUIT

COBOL's PERFORM/UNTIL has been modified in COBOL-
85 to allow optional specification of WITH TEST AFTER or
WITH TEST BEFORE until a specified condition has been
met. This change was made to change the minimum number
of iterations, if WITH TEST is coded, from O to 1. M's
FOR/DO command can specify a specific number of

Ill COMPUTING 43

iterations. This command can include a QUIT with a post­
conditional, which will teffilinate the loop if a certain
condition is met. M also has the argumentless DO command
which uses the QUIT with post conditional to. telillinate the
loop, thus the number of iterations does not have to be
specified. M's repeat/until would be coded FOR DO label or
block structured code Q:postconditional. M's do/while would
be coded FOR QUIT:postconditional DO label or block
structured code. This would correspond with COBOL's
WITH TEST BEFORE or WITH TEST AFTER.

Explicit scope teffilinators in COBOL-85 such as End-Add or
End-Write make the range of each statement more evident to
the reader, and promote structured coding. M has the QUIT
command which generically ends routines, functions and
FOR loops, but it does not specifically indicate which
function or routine is being ended. COBOL-85's explicit
scope terminators specifically identify which function is being
telillinated which helps in following the program logic.

END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE
END-IF
END-MULTIPLY
END-PERFORM

QUIT

END-READ
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE

COBOL's CALL program command is equivalent to M's DO
Alabel command, where the Alabel means an external
program name. Each language is calling another program to
be perfolilled. In COBOL a Linkage Section must be
declared in the Data Division to identify fields of data from
the called subprogram. In COBOL the syntax for the calling
program is CALL "PROGRAM-NAME" USING DATAl,
DATA2, etc. The called program must have the Procedure
Division coded as PROCEDURE DIVISION USING DAT Al,
DAT A2, etc. The parameters are matched using the position
of the parameters.

In M the syntax in the calling program, which contains the
actual parameter list, is DO PROGRAM(Datal,Data2). The
called program, which contains the folillal parameter list, is
coded PROGRAM(Datal,Data2). The actual list of
parameters can be shorter than the folillal list of parameters
and the folillal parameters are initialized (by an implied

44 M COMPUTING

NEW command) before the subroutine or called program is
executed. In M the parameters are also matched using
position. Control is returned to the original program in both
cases after the CALL or DO is completed. M uses the DO
command for perfolilling a subroutine within a program (DO
label) or for perfolilling an external routine (DO Aroutine).
The only difference in the syntax is that the external routine
requires an up-arrow or caret (A). No Linkage Section is
necessary in M.

The EVALUATE statement in COBOL-85 was developed to
replace several IF statements for multiple condition testing
and implements the case structure in COBOL. It is
comparable to the SELECT statement in M. The
EVALUATE statement checks a variable for a certain value
and executes a different function depending upon what value
is contained in the variable. The $SELECT function ($S)
evaluates an expression as to whether it is true or false and, if
it finds a true expression, it executes the value corresponding
to the true expression. The $SELECT function can be coded
with an else value just in case no true expression is found. As
can be seen below, the COBOL Evaluate statement is much
more wordy than M's $SELECT function, but it is very
readable. The $SELECT function is more concise. An M
programmer would find it readable.

EVALUATE STATEMENT - COBOL

Evaluate TYPE
When 1

Move 'a' to NAME-CODE
When 2 ~

Move 'b' to NAME-CODE
When 3

Move 'c' to NAME-CODE
When other

Move ' ' to NAME-CODE
End-Evaluate.

SELECT STATEMENT - M

$S (T=l :N= 'a', T=2 :N= 'b', T=3 :N=' c', 1 :N=' ')

COBOL-85 had been updated to obtain the day of the week
through the use of ACCEPT identifier FROM DAY-OF­
WEEK statement. The field used for the identifier field must
be a one-digit unsigned numeric field. Days of the week are
represented numerically from 1 to 7 for Monday through
Sunday. In M the $HOROLOG function, $H, will obtain the

June 1993

-
is
1g
th
0
0
).
le

is

0

g
s
e
"' "
~

)

f

date and time. To obtain the day of the week there are
common utilities available in the various systems.

The IF statement was updated in COBOL-85 to include the
reserved word THEN, making the syntax IF-THEN-ELSE,
which is more structured wordage instead of just IF-ELSE.
M uses the IF-ELSE syntax. In M the IF syntax affects the
rest of that command line only. The ELSE syntax also affects
only the rest of that command line. The IF command sets the
value of a system variable $TEST to either true (1) or false
(0) based on the conditions contained in the IF statement.
The ELSE statement is executed only if the value in $TEST is
false (0). The $TEST system variable is also set by other
commands such as a LOCK or READ with a time-out. This
could potentially cause the ELSE statement to execute or not
execute in error.

COBOL-85 has been revised to include two new relation
operators not previously included in COBOL-74, the
GREATER THAN OR EQUAL TO, >=, and the LESS
THAN OR EQUAL TO, <=. In M, greater than or equal to is
coded as NOT IBSS THAN, '<. Less than or equal to is
coded as NOT GREATER THAN, '>.

COBOL-85 has two new class conditions, ALPHABETIC­
UPPER and ALPHABETIC-LOWER to enable testing for
upper and lower case. These two new classes are in addition
to the ALPHABETIC class condition, which tests for both
upper and lower cases including blank spaces and the
NUMERIC class which tests for numeric. This compares to
M's pattern match operator ?U for upper case or ?L for lower
case and ?A for alphabetic. ?A, ?U and ?L do not include
blank spaces. M's pattern match operator allows for checking
for ASCII control characters (?C), the entire ASCII character
set (?E), numeric digits (?N) and punctuation characters (?P).

M can check for specific numbers of these characters in
addition to checking for string literals such as DATA?l"z", to
check for the letter "z" in the variable DATA. M can check a
variable to see if a certain series of characters is contained
within the variable. The syntax to check for the two formats
of zip code would be coded DATA?5N!(DATA?5Nl"-"4N).
Thus M is capable of checking a variable for very complex
patterns of characters including ranges of characters. The
pattern match operator is evaluated to either true or false.

COBOL-85 has added a class facility which is user defined in
the SPECIAL-NAMES paragraph of the CONFIGURATION
SECTION in the ENVIRONMENT DIVISION. This user-

June 1993

defined class facility can be tested with a class-condition IF
statement. M can set a variable equal to the values necessary
to define the class and the CONTAINS clause can be used to
see if data is contained in the values assigned to the variable.
The ALPHABET clause in the SPECIAL-NAMES paragraph
allows the choice of three collating sequences. STANDARD-
1 is the ASCII code (American National Standard Code X3.4-
1977 for Information Interchange). STANDARD-2 is for the
International Standard 646 code for Information Processing
Interchange. NATIVE is for the native code for the
computer, which is EBCDIC (Extended Binary Code Decimal
Interchange Code) for most IBM systems.

COBOL-85 has added condition expressions that represent a
false path to conditions that in COBOL-74 could only be
tested for true conditions. READ AT END can now be coded
for a false condition READ NOT AT END or READ
INVALID KEY can be coded for the false condition READ
NOT INVALID KEY. M can code a negative for a
conditional using the not (') logical operator.

READ MASTER-FILE
KEY IS MASTER-KEY

INVALID KEY
PERFORM ERROR-ROUTINE

NOT INVALID KEY
PERFORM ROUTINE-1
PERFORM ROUTINE-2

END-READ.

IF '$DATA(AMASTER(MKEY)) D ERROR Q

COBOL-85's USAGE IS BINARY clause replaces COBOL-
74's COMP clause to specify binary representation in
computer storage. Also, USAGE IS PACKED-DECIMAL in
COBOL-85 replaces the nonstandard COMP-3 of COBOL-74
in order to provide for packed decimal representation. No
equivalent clause for storage is necessary in M.

The COBOL-85 standard also added the INITIALIZE
statement in order to initialize elementary fields within a
group. This statement helps to reduce the coding involved in
initializing group fields. Alphanumeric and alphabetic fields,
including edited fields, are initialized to spaces and numeric
fields, including edited fields, are initialized to zero. There is
also a REPLACING BY clause to provide the means to
initialize to other values than zeros or spaces. In M, groups of
fields can be initialized using the SET statement, i.e., SET
(A,B,C)=0, sets fields A, B and C to zero. The SET
statement can also be used to initialize fields to other values.

Al COMPUTING 45

No additional or new statement was needed in M to provide
for this initialization capability.

COBOL's original INSPECT statement converts individual
characters in a field from one value to another. The new
INSPECT/CONVERTING statement permits the replacement
of multiple characters in a field. The characters are matched
positionally. The syntax INSPECT DATA-FIELD
CONVERTING "XYZ" to "ABC" would replace X with A, Y
with B and Z with c.11,21 M's TRANSLATE function
($TR) with the syntax $TR(V ARIABLE,REPLACE,WITH)
or $TR(V ARIABLE, REPLACE) substitutes characters in
REPLACE that are contained in VARIABLE with characters
from the WITH string. It is a character by character
substitution. I I

Using the concept of reference modification, it is possible in
COBOL-85 "to reference a portion of a data field without
using REDEFINES or group items in the data description." 15
Assuming two data fields, X defined as PIC 9(10),
representing a telephone number including the area code, and
Y defined as PIC 9(7), the syntax using reference
modification would be: .MOVE X(4:7) TO Y. The 4 is
interpreted as the starting byte and the 7 is the number of
bytes being moved. The data in· A would be moved starting
with the fourth byte and moving seven bytes. Thus Y would
contain the phone number minus the area code. The second
item which specifies the number of bytes being moved is
optional. If not included, the move will be from the starting
byte specified to the end of the field. The new reference
modification in COBOL-85 compares to the EXTRACT ($E)
function in M. It extracts "a substring from a target string by
character position(s)." Thus $E("COBOL-85",5)_ would
return an "L" or $E("ANSI STANDARD MUMPSh;6,99)
would return "STANDARD MUMPS". To return the first
character of an expression the syntax would be
$E("V ARIABLE") which means $E("V ARIABLE" ,1),
without coding the '1'.

COBOL's STRING statement joins (concatenates) multiple
sending fields into one field. The DELIMITED BY clause
specifies which character marks the end of the sending field.
To use all of the characters in the sending field SIZE is
specified as the delimiter, otherwise only the characters to the
left of the DELIMITER are used in the STRING operation.14
The POINTER option specifies the starting position for
characters to be placed in the receiving field.

48 M COMPUTING

STRING FIELD-A, FIELD-B, FIELD-C
DELIMITED BY '"'

INTO TARGET-FIELD
WITH POINTER POSITION.

M's concatenate operator, which is the underscore, "_",
attaches one string to the end of another string. If A="M ",
B="vs. " and C="COBOL", the syntax: WRITE A_B_C
would result in "M vs. COBOL".

COBOL's UNSTRING statement separates one field into one
or multiple receiving fields. The DELIMITED BY clause
indicates what character separates the fields in the sending
field. More than one delimiting character can be specified
using the OR clause. The delimiter will also be placed in the
receiving field if the DELIMITER IN clause is coded. The
number of receiving fields which are used can be totaled with
the TALL YING IN clause and the COUNT IN clause counts
the number of characters in a receiving field.14

UNSTRING INITIAL-FIELD
DELIMITED BY '"'
INTO FIELD-A

COUNT IN COUNT-A
FIELD-B

COUNT IN COUNT-B
TALLYING IN TALLY-COUNT.

The UNSTRING function is similar to M's $EXTRACT
function as explained in the above paragraph, which uses
character position to select a substring from the starting
string. The $PIECE function ($P) in M uses a delimiter to
extract a substring from the original strfng. The syntax can
be coded $P(V ARIABLE,DELIMITER,FROM PIECE,TO
PIECE). If coded with just the VARIABLE and
DELIMITER, $P(V ARIABLE,DELIMITER), the piece
extracted is assumed to be the first piece delimited by the
DELIMITER. Another form of this function is
$P(V ARIABLE,DELIMITER,FROM PIECE) which returns
the piece number from the original string delimited by
DELIMITER. A certain piece number of a string can be set
to a specific value using the SET
$P(V ARIABLE,DELIMITER,PIECE NUMBER)= syntax.
This enables the programmer to change a specific substring of
characters in the original string.

In COBOL the PICTURE clause provides the capability for
formatting numeric fields with editing characters. COBOL
usually needs two specifications for the same field, the
unedited field used for storage and the edited field which is

June 1993

■

l used for displaying fields in reports or on the screen. In M
the $FNUMBER function ($FN) formats numbers for positive
and negative signs or suppresses the signs, inserts commas,
inserts trailing signs, places negative numbers in parentheses
and optionally inserts decimal places. Two declarations of
the same field, for storage and display, are not necessary in
M.

COBOL uses the JUSTIFIED RIGHT clause after the
PICTURE clause in the data-item description of a data item to
override the normal left justification. The JUSTIFIED
RIGHT clause works only for the receiving field in a COBOL
MOVE. M uses the $JUSTIFY function ($J) to right justify
either a number or character string in a user-specified field
width. An option exists for inserting decimal places. The
syntax can be either: $J(V ARlABLE,WIDTH), or
alternatively, $J(V ARlABLE,WIDTH,DECIMAL).

COBOL-85 increases the number of table dimensions from
three to seven. The PERFORMN ARYING statement has
been changed to l!]low a variable number of AFTER clauses
to accommodate the increased table dimensions.

PERFORM STEP-THRU-TABLE
VARYING FIRST-INDEX FROM 1 BY 1
UNTIL FIRST-INDEX> 5

AFTER INDEX-TWO FROM 1 BY 1
UNTIL INDEX-TWO> 5.

M's local and global arrays can contain any number of
subscript levels. M's arrays use a hierarchical tree structure,
not a table matrix structure. The $ORDER function will step
through an array structure. The $GET function can be used
to access an array and will return a null (""'"') if there is only
a pointer node (no data) in the array. The size of M's global
arrays is not restricted by the language, but may be restricted
by the operating system.

FOR SET I=$O("TABLE,(TINDEX)) Q:I=""

SET I=$G("TABLE(TINDEX))

M uses the $DAT A function ($D) as a status indicator to
show if a variable exists, and if it does exist, whether it
contains data. There are four results which can be obtained
with the $DAT A function, 0, 1, 10 and 11. A O indicates that
the variable does not exist. A 1 indicates that a variable or
part of an array contains data, but if it is part of an array it
contains no descendants. A 10 indicates that the variable is
part of an array, that the node exists and has descendants, but

June 1993

--~-~"-

does not contain data. An 11 indicates that the variable is
part of an array, that the node exists, has descendants and
contains data. The $DAT A can be used with the $ORDER
function, which traverses a global array, to ascertain that the
global or global node exists, has data and has descendants
before attempting to traverse it. No corresponding function
exists in COBOL.

The $ORDER function ($0) is used to traverse a subscripted
global or array reference. It will step through a global at the
level of the subscripted reference and returns every subscript
which is defined at the level of the subscripted reference.
Data is retrieved from the array for the subscripted reference
level. To initialize a subscripted level null ("""") is used.
Null is also used to end a subscripted level sequence. The
$ORDER is a powerful, flexible tool for accessing M's global
arrays (M's database). No corresponding function exists in
COBOL.

M has the $LENGTH function ($L) which will indicate the
length of a variable string in integers or return the number of
fields separated by a specified delimiter. The syntax is
$L(V ARlABLE) which returns the length of V ARlABLE, or
$L(V ARlABLE,DELIMITER) where the number of fields in
V ARlABLE separated by DELIMITER is returned.

The $FIND function ($F) with the syntax
$F(V ARIABLE,CHARACTER(S) TO BE FOUND) or
$F(V ARlABLE,CHARACTER(S) TO BE FOUND,
STARTING POINT OF SEARCH). The $FIND will return
the "integer corresponding to the next character position in
the target string after the found string." 11

M's CONTAINS operator "(" compares two string
expressions. If the left-hand string contains the right-hand
string the result is true (1). M's FOLLOWS operator ")"
compares two string expressions to ascertain whether the left­
hand string follows the right-hand string in the ASCII
collating sequence. The values returned are true (1) or false
(0). COBOL's GREATER THAN operator ''>" compares to
FOLLOWS. COBOL does not have a function that compares
with M's CONTAINS operator.

M's $ASCII will return the ASCII decimal value for a
character. The $CHAR function is the opposite of the
$ASCII function and will return the ASCII character of a
number.

M COMPUTING 49

COBOL-85 standards increased the maximum length of a
nonnumeric literal to 160 characters. M's maximum length
of a string literal is 255 characters.

Readability

Readability of computer programs has been considered to
contribute to the maintainability of programs. Programming
structures that were found to contribute to readability were:

"Extensiveness of comments
Extensiveness of blanks in the left margin
Extensiveness of blank lines
Average length of variable names
Number of arithmetic operators per 100 lines
Average number of goto statements per label"18

A study of student programmers found that the amount and
length of comments was the only factor that proved to be
statistically significant when related to actual programming
time.18

COBOL's English-like language makes its _program logic
fairly easy to understand and follow even by non­
programmers. COBOL programs can be very lengthy, which
works against readability. The use of GOTO's in some of the
older unstructured code makes programming logic hard to
follow. Emphasis on structured code has improved
readability standards.

M's readability is a concern because of its abbreviated
commands and functions. In older MUMPS code the entire
255 character maximum line length was used in order to
enhance operating efficiency on minicomputers, but using the
entire line length tended to decrease readability. Block
structuring was added to M in order to improve readability.
Documentation and capitalization of M commands and
functions has been suggested to aid in readability .16 M's
flexibility tends toward unstructured code. In the M
community, structured code has been seen as being less
efficient. Recent changes to ANSI standards have made
structured M code easier and more desirable to write and
maintain. The structuredness leads to enhanced readability.

Conclusion

Each language has related strengths and weaknesses inherent
to the purpose for which it was developed. Historically, a
great number of COBOL data processing shops have existed.

50 M COMPUTING

Many COBOL shops and programmers have strongly
entrenched negative feelings regarding changing their
programming language in general and especially regarding
MUMPS in particular. IO Considering that software
represents from 50 to 80 percent of overall corporate data
processing budgets, it would make good business sense to
choose a computer language that contributes to overall
productivity and cost efficiency by using system resources
effectively. Please see EXHIBIT A for a comparison of a
simple COBOL and M program for reading a file (global) and
writing a report.

According to John Spillane, who has seventeen years of
experience in programming various languages including
Assembler, C, COBOL, BASIC, FORTRAN AND MUMPS,
in M "there is no need for the Environment Division of
COBOL, or the memory allocation of C. MUMPS does not
require dimension statements, sorting routines, record size or
field size decisions, opening and closing files, or data type
declarations and conversions that most 3GLs require. The
programmer need not worry about disk or memory space
compaction as the MUMPS integrated database handles that
transparently. Database access is handled for the
programmer. The programmer need not worry about
sequential files versus random files versus ISAM. Database
and variable names are self-documenting. Because of these
advantages, applications can be developed much more quickly
than in other languages. "20

There have been predictions that the programming field in
the United States will eventually gC\,_through a restructuring
and downsizing in order to meet foreign competition.22 The
issues at stake in the programming field are the same as they
were in the manufacturing sector a few years ago: cost,
productivity, efficiency and quality. M traditionally runs on
smaller, less expensive minicomputers or microcomputers,
but even on mainframes it uses fewer system resources. It
utilizes less disk space and runs in less time than COBOL
applications. Development time is less for M systems than
for COBOL systems. All of these factors relate to cost,
productivity, and efficiency. Quality is an issue that
individuals, both employees and managers, must be
concerned about in order to meet the needs of customers and
clients. Utilizing a language that enhances productivity and·
efficiency at a lower cost, would leave more time to devote to
quality issues.

Effectively utilizing various computer languages to harness
their individual strengths is the trend of future system

June 1993

-
ongly
their

rding
tware
data

;e to
'erall
1rces
of a
and

, of
1ing
PS,

of
not
or

1Je
he
ce
at
le
ut
;e
,e
y

environments. M has demonstrated strengths in the cost,
productivity and efficiency areas in addition to an ability to
share data with other systems. Both M and COBOL have
evolved since their initial development. M's strengths were
shown in its superior performance on the benchmark tests.
Its flexibility and efficiency in regard to operating
environments, program structure, sorting, and data types were
demonstrated. M expedites application development and
enhances programmer productivity.19 Quality and cost issues
indicate that M should be aggressively promoted, especially
as an alternative to COBOL.

1.

2.

3.

4.

5.

6.

8.

9.

10.

REFERENCES

Alonzo, Casimir M. "System Performance: A
Benchmark Study on MUMPS and Other Systems."
MUG Quarterly. Vol. 13, No. 3. (1983): 13-16.

Barnes, Jeff. "A Case for MUMPS." DBMS. Vol. 2,
No. 6 (June 1989): 58-65.

Bozmari, Jean S. "Question everything!"
Computerworld. Vol. 27, No. 1 (28 Dec. 1992 - 4
Jan. 1993): 6-7.

Bradley, James. Introduction to Database
Management in Business. New York: Rinehart and
Winston, 1987.

Corman, Jared S. and Pasco, Daniel. "SQL and
MUMPS: The Right Combination for Business
Applications." MUMPS Computing. Vol. 22, No. 1
(February 1992): 24-27.

"DSM Gets Top Marks in TPC Benchmark."
MUMPS News. Vol. 7, No. 4 (October 1990).

Herring, Barry. "TPC Benchmark A - An Industry
Standard Performance Test." MUG Quarterly. Vol.
29, No. 1, (June 1990): 84-86.

Holst, Sebastian. "Integrating Digital Standard
MUMPS (DSM) and the FOCUS 4GL." MUMPS
Computing. Vol. 22, No. I. (February 1992): 29-31.

Kohun, Frederick G. Technological Innovation and
Diffusion in Medical Software: A Case Study of
MUMPS. Diss. Carnegie-Mellon University, 1990.
UMI, 1990. DA9026767.

June 1993

~711rrtt' s. -- -''"7: ·,:,,':z;'}~, > '"-~:,,~:;;;r;,;~;b?ffllt i I

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lewkowicz, John. The Complete MUMPS.
Englewood Cliffs, New Jersey: Prentice Hall Inc.,
1989.

Munnecke, Thomas. "A Linguistic Comparison of
MUMPS and COBOL." National Computer
Conference, AFIPS, (1980): 723-729.

Munnecke, T., Walters, R. F., Bowie, J., Lazarus, C.
B., and Bridger, D. A. "MUMPS: Characteristics
and comparisons with other programming systems."
Medical Informatics. Vol. 2, No. 3, (1977): 173-176.

Murach, Mike and Noll, Paul. Structured ANS
COBOL Fresno, California: Mike Murach &
Associates, Inc., 1987.

Philippakis, A. S. and Kazmier, Leonard J. The New
COBOL An Illustrated Guide. New York: McGraw­
Hill Book Company, 1986.

Ravenhill, Kevin and Schindler, Karen. "Efficiency
versus Structure - is it a Compromise?" MUMPS
Computing. Vol. 22, No. 3, (June 1992): 74-80.

Rex, John. "A Touch of MUMPS." Computer
Language. Vol. 6, No. 11, (November 1989): 55-67.

Richmond, Joseph R. Software Maintainability
Metrics for MUMPS Programs. Diss. The
University

Smith, Jill Y. and Harvey, William J. "MUMPS is
Germinating Business Productivity." Journal of
Systems Management. Vol. 39, No. 4, (April 1988):
26-31.

Spillane, John. "MUMPS in Credit Unions."
MUMPS Computing. Vol. 22, No. 1, (February
1992): 18-21.

Welburn, Tyler. Structured COBOL Fundamentals
and Style. Palo Alto, California: Mayfield Publishing
Company, 1986.

Yourdon, Edward. Decline & Fall of the American
Programmer. Englewood Cliffs, New Jersey: ard.
Yourdon Press, 1992.

JIii £'1,...'11.,, -- - -

11:30 AM 14-JAN-93
SALES COMMISSION

EXHIBIT A

M PROGRAM

SALESCOM; NEW PROGRAM [01/14/93 11:29 AM]
; SALES COMMISSION REPORT
; ASSUME A GLOBAL OF
; ASCOM(SNUM)=RCD_A_REGIN_A_TERR_A_SNAME_A_CPCT_A_UNITS_A_CAMT
D INIT
D MAIN
Q

MAIN; main routine
s SNUM=" II

F S SNUM=$O(ASCOM(SNUM)) Q:SNUM="" D
. S DATA=ASCOM(SNUM),RCD=$P(DATA,DL,l) ,REGIN=$P(DATA,DL,2),TERR=$P(DATA,DL,3),
SNAME=$P(DATA,DL,4),CPCT=$P(DATA,DL,5) ,UNITS=$P(DATA,DL,6),CAMT=$P(DATA,DL,7)
. S FCPCT=$FN($J(CPCT,5,2), ", ") ,FCAMT=$FN($J(CAMT,8,2), ", ")
. W ! !?5,REGIN,"-",TERR,?15,SNUM,?20,SNAME,?50,UNITS,?55,FCPCT,"%",?65,"$",FCAMT
Q

INIT; initialization routine
s DL="A"
Q

* THE LABEL HEADINGS IN THE M PROGRAM AND THE DIVISION HEADINGS IN THE COBOL PROGRAM ARE
BOLDED FOR DISPLAY PURPOSES ONLY. THIS WOULD NOT OCCUR IN A PROGRAM LISTING.

52 M COMPUTING June 1993

I

EXHIBIT A

COBOL PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. SALES-COMM-REP.
*THIS PROGRAM WILL PRINT A SALES COMMISSION REPORT FROM A SALESPERSON FILE
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SALESPERSON-FILE
ASSIGN TO INFILE.

SELECT SALES-COMM-FILE
ASSIGN TO OUTFILE.

DATA DIVISION.
FILE SECTION.
FD SALESPERSON-FILE

RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD.
05 REC-CODE
05 REG-IN

FD

05 TERRITORY-IN
05 SALESPERS-NUMB-IN
05 SAL~SPERS-NAME-IN
05
05 COMM-PRCNT-IN
05
05 UNITS-SOLD-IN
05
05 COMM-AMT-IN
05
SALES-COMM-FILE

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9 (2).
X(2).
9 (4).
9 (3) .
X(26).
X(l).
9(2)V99.
X (5).
S9 (3).
X(3).
9(5)V99.
X(20).

RECORD CONTAINS 131 CHARACTERS
DATA RECORD IS OUTPUT-RECORD.

01 OUTPUT-RECORD.
05
05
05
05
05

REG-OUT
HYPHEN-OUT
TERRITORY-OUT

05 SALESPERS-NUMB-OUT
05
05 UNITS-SOLD-OUT
05
05 COMM-PRCNT-OUT
05 PRCNT-SIGN-OUT
05
05 COMM-AMT-OUT
05

WORKING-STORAGE SECTION.
01 WS-EOF

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC

X(5).
X(2).
X(l).
9 (4).
X(3).
9 (3).
X (3).

X(3).
ZZ.99.

PIC X(l).
X(3).
$ZZ,ZZZ.99.
X(55).

PIC X (3) VALUE "NO".

Continued on next page

June 1993 Ill COMPUTING 53

PROCEDURE DIVISION.
MAIN-ROUTINE.

OPEN INPUT SALESPERSON-FILE
OUTPUT SALES-COMM-FILE.

READ SALESPERSON-FILE
AT END MOVE "YES" TO WS-EOF.

PERFORM MOVE-WRITE-PROCESS
UNTIL WS-EOF = "YES".

CLOSE SALESPERSON-FILE
SALES-COMM-FILE.

STOP RUN.
MOVE-WRITE-PROCESS.

MOVE SPACES TO OUTPUT-RECORD.
MOVE REG-IN TO REG-OUT.
MOVE 11

-
11 TO HYPHEN-OUT.

MOVE TERRITORY-IN TO TERRITORY-OUT.

A Stitch in Time
Saves Nine

Sentient Systems can help you complete
your projects on time.

We have the resources you need to
complement your own staff on both large
and small projects.

For a seamless solution.

Call Ginger Mylander.

800-966-9419 SENTIENT
SYSTEMS

The innovative leader in technical services and
support for the M community.

MOVE SALESPERS-NUMB-IN TO SALESPERS-NUMB-OUT.
MOVE SALESPERS-NAME-IN TO SALESPERS-NAME-OUT.
MOVE UNITS-SOLD-IN TO UNITS-SOLD-OUT.
MOVE COMM-PRCNT-IN TO COMM-PRCNT-OUT.
MOVE 11 %11 TO PRCNT-SIGN-OUT.
MOVE COMM-AMT-IN TO COMM-AMT-OUT.
WRITE OUTPUT-RECORD

AFTER ADVANCING 2 LINES.
READ SALESPERSON-FILE

AT END MOVE "YES" TO WS-EOF.

54 Ill COMPUTING June 199~

