
M SYSTEM
ADVANTAGE

DATA REPRESENTATION AND MODELING USING GLOBAL MAPPING

William J. Harvey, Ph.D.

Institute for Information Management and
Department of Computer and Information Systems

Robert Morris College
Coraopolis and Pittsburgh, Pennsylvania

Abstract

M associative global arrays provide a platform for
data management. Database implemento_rs map
logical structures onto global arrays. This paper
presents a survey of the role of global mapping in
supporting custom database designs and _database
systems. The paper focuses on current to1;ncs, such
as using global mapping in relational database
systems, in SQL access to FileMan databases, and in
object data management.

Introduction

M global arrays of n dimensions are named global
because all qualified users in an M system user class
can access these arrays. By comparison, local arrays
are dependent on the execution of a single program,
like variables and arrays in most programming
languages. Global arrays (globals) provide
persistence for applications based on M by hiding all
details of file access and indexing support (such as
B-tree pointer management). M is listed as one of
the languages with a model of persistence in Section
2.8.1 (Areas for Standardization) of the Reference
Model for Object Data Management developed b1 the ANSI Object-Oriented Database Task Group.
Arrays are traversed and checked by using standard
(ANSI/MDC Xll.1 1990, FIPS 125, or ISO 11756)
functions. You can find early treatments of M arrays
in the referencesf1ed in the notes section inclu~ed
with this paper. ' M arrays have the followmg
advantages:

o the concept of the M array (subscripted
variable), as a platform for data management,
is relatively simple

o the M array offers a high level of automation
of persistent data storage

o multilevel associative indexing

o within the context of a single language
design, there is no impedance mismatch
between database access and procedural
programming

M arrays support custom database designs and their
accompanying query and retrieval systems. Each
database implemented in an M environment has a
system of mapping logical structures onto global
arrays. Database systems based on M incorporate

24 Al COMPUTING

mapping strategies and data definition utilities. Such
data definition facilities correspond to the data
definition capabilities provided for standard SQL
and NOL databases. Everest et al. include a set of
"commonly accepted semantic data modeling
constructs" in the introductory section of their
comparative treatment of "data structuring concepts"
underlying the ANSI NOL and SQL standards4 entities, attributes, relationships, and identifiers.
We can use these constructs to examine global
mapping capabilities and representation of
information models in M database technology.

General-purpose M database systems have
sophisticated global mapping facilities for
accomodating information models. Examples of
such general systems in M environments are:

o VA File Manager (FileMan)

o SQL implemffitions, such as InterSystems'
Open!MSRJJ: and KB Systems'
KB SQL

o Dig~tal Equipment Corporation's DASL ™
product (Digital Standard MUMPS
Application Software Librf_ry)

o BAIK5

o AIDA6

o NOUS (also called GNOSIS) 7

o Relational systems using an interface other
than SQL, such as ~ational Computer
Systems' Trustware Report Generator,
based on the QBE model

o MUMPS Query Language (MQL)8

o Object data managlifllt prototype systems,
such as EsiObjects o~ucational
Systems, Inc. or MOOPS of MGlobal
International, Inc.

o DBMpS9

These systems utilize code generation and thus
reduce or eliminate ad hoc procedural coding.

The VA FileMan database management system,
which is based on M, has automated support of
abstract data types. VA FileMan can support higher
levels of database representation. Lindner and others

June 1993

provide el~mples in the implementation of
Ntelligence and in Andrews' model of a "cotpf1on
data structure" for clinical data management. In
the same fashion as SQL databases, which store
metadata in SQL tables, FileMan databases store
metadata in FileMan files.

Global mapping achieves data definition by
exploiting three properties of M arrays:

o Hierarchical subscript paths

o Sets of subscripts

o Stored strings

Global variable subscripting produces a
representation of sparse arrays, since only the
necessary references are present in the array
structure. The use of the term array here is different
from the usual connotation of a dimensioned array
with cells that exist whether empty or not. You can
use a subscript path as an index and detect the
presence or absence of paths nonprocedurally.

The lowest level of subscripting for a given
reference iuperits a parent pathway to the root node,
a variable name, and each subscript node may have
descendents. The subscripts with a particular
common parent reference constitute a set of values.

Strings are stored at nodes of arrays. These strings
may be the empty string (null string) and you may
interpret all values in M as strings, numbers, or
boolean values, depending on context. It is common
practice to store data functionally dependent on a
given reference as a delimited string or a set of such
strings.

Data definition in M databases specifies global
variable subscripting paths and string structures.
Automated data dictionaries document the semantics
of the structures as well as the structures themselves.
Data definition treatment of strings provides
description of delimiting techniques. The delimited
elements are called pieces, since you use a standard
M $PIECE function to manage the delimited strings.
Global mapping data definition facilities in different
systems have in common the specification of array
reference (variable name and subscripting pattern)
and, if necessary, delimiter used and piece position.

Use of M data management technology in
heterogeneous database systems requires attention to
equivalence of M and non-M databases and thus a
global mapping logic.

Custom Data Representation and Modeling Using
Globals

Custom database design in the M environment
involves mapping entities and relationships to
arrays. Consider a simple use of an M array. In a
department store, garments are on sale at a
discounted price; discount rates are specific to the

June 1993

individual item and assigned at the time of
markdowns. Example 1 shows a way to represent
these garments, assuming more than one discount
amount or method exists and a single amount or
method is applied to any given garment on sale.

Example 1

AONSALE(GARMENT)=DISCOUNT

Note the following about Example 1:

o GARMENT is a unique garment identifier;
DISCOUNT is the discount percentage or
possibly a code for the markdown method for
a particular garment

o AONSALE(GARMENT) evaluates to the
applicable discount or discount method

o GARMENT in AONSALE(GARMENT) is a
subset of GARMENT in an inventory which
could be represented by
AINVENTORY(GARMENT).

o Array A ONSALE is equivalent to a file with
indexing, but non-procedural access is
possible to determine conditions through
syntax such as IF
$DATACONSALE(GARMENT)), where
$DATA is a standard function that checks
array tree structures.

Example 2 shows a different programming
convention, but conveys the same information as
Example 1.

Example 2

AONSALE(GARMENT,DISCOUNT)=<null>

According to the convention in Example 2,
$0RDERCONSALE(GARMENT, "")) evaluates to
the applicable discount.

In Example 3 we have a different department store
model. In this model we assume that there are
various established sale categories and that discounts
may vary by type of sale. We add SALETYPE to
identify a particular category of sale.

Example 3

AONSALE(GARMENT,SALETYPE)=DISCOUNT

The data structure in Example 3 permits us to
determine which discount is used for a particular
type of sale, assuming that discounts may vary by
type of sale.

M COMPUTING 25

If we imagine a database in which we record which
sets of data employees are authorized to use, we
require representation of a many-to-many
relationship, as shown in Example 4.

Example 4

AAUTHORIZE(EMPLOYEE,DATASET)=<null>
AACCESS(DATASET,EMPLOYEE)=<null>

EMPLOYEE and DATASET values uniquely
identify employees and sets of data, respectively.
We note the following in Example 4:

o A AUTHORIZE allows us to determine which
sets of data a given employee is authorized
for

o A ACCESS is an inverted index of
"AUTHORIZE and allows the programming
an easy route to displaying which employees
may access a given set of data

Standard M database traversal functions permit all
employees in A AUTHORIZE or all sets of data in
A ACCESS to be checked or reported.

These examples show that rule structures and
constraints can be represented conveniently and
exploited in operations. Much more complex logical
structures are possible. Databases designed for a
particular application usually have features similar
to those of a general-purpose database system, such
as a data dictionary, but lack the ability to add files
not predefined.

Relational and Other Database Systems

You can develop relational database support for
operations within the M environment, based on the
associative arrays. Both SQL and Prolog models
have been used in developing relational databases in
M. Mcfilosh presents a model for interfacing SQL
andM.

Yannakoudakis states that "it is as easy to establish
relation~Jrom trees as to create trees from relational
tables." He uses the term binding attribute to
refer to the attribute to use as the parent subscript
(and thus as the key) in storing a relation as an M
tree-structured array. What Y annakoudakis refers to
as alternative binding orders represents the
alternative implemented by setting up inverted
global files (or subtrees) in M databases. Although
indexes are redundant structures from the strict
standpoint of the relational database model, and
indexing is distinct from base tables and views, in
M, indexes and inverted files must be established in
the same kind of data structure as the array
representing a base table. Indexed data can point to a
stored string or substring rather than to a subscript
or array node reference as with a foreign key
reference.

26 Al COMPUTING

Several approaches are used in designing M database
systems. Among the options to be evaluated are:

o Using internal numbers and pointers or
external names

o Using the approach to keys for hierarchical
databases as proposed by Jacobs where all
subscripts are keys in the relational database
sense any/ll nonkey fields are stored as data
at nodes

o Storing all values as paths (storing only null
strings as values at nodes)

o Combining key references where the key
consists of more than one attribute into a
composite, delimited string

o Using the order of subscript references

o Using a single tree or multiple trees

Example 5 shows the model of using the
combination of subscripts as a primary key. In
Example 5, a system using this model stores a
delimited string record.

Example 5

ADATABASE(TNAME,KEY1,KEY2)=FIELD1AFIELD2

In example 5 the table TNAME has a two-subscript
key. KEYl and KEY2 represent the two key fields.
Two nonkey fields, delimited by the A character, are
stored for each record. No duplicate key values are
possible in this model. It is necessary to store more
than one delimited string for a given record if the
physical length of a stored string might exceed the
maximum number of characters supported for a
string.

Database systems can add new items to an array by
using a subscript representing the order of arrival,
such as a sequence counter or timestamp, to identify
each new record. The system then uses index arrays
to find records.

Indexing is essential to gain optimal performance.
Volkstorf identifies design strategies for fsobals and
algorithms which reduce disk access. Walters
presents a survey of database optillf~tion
techniques with attention to M algorithms and
Middleton provides a fpfus on query optimization of
databases based on M.

Digital Equipment Corporation's DASL (DSM
Application Software Library) has an SQL query
driver. At a general level, the DASL user maps data
names to M globals and creates a data dictionary.
The user can then define tables for SQL access.

InterSystems Corporation's Open M/SQL product
integrates the SQL and M standards and makes
available embedded SQL programming in M with

June 1993

enhancements. Pantaleo outlines the way in which
relational structures are suppp~ through global
mapping and a data dictionary and points out that
base tables in a relational system· based on M are
globals at the logical level accompanied by index
maps. Open M/SQL links tables ~y using
designative and characteristic references. 1

KB_SQL (KB Systems, Inc.) is an example of an
SQL product designed to run in standard M
environments. ' According to KB_ SQL
documentation, the "data dictionary pro~3es a
relational view of your MUMPS globals." The
KB_ SQL user has the option of standard SQL data
manipulation commands such as CREATE and
INSERT.

NOUS, developed at the MUMPS System
Laboratory in Nagoya, Japan, provides Prolog
programming embedded in M. The structure of
globals in M facilitates the representation of nested
relations, but NOUS requires an enhancement of the
M global structure to support nested

2
felational

databases according to the Prolog model. O'Kane
prof:£Sed an alternative approach relations based on
M. O'Kan~s "mapping of the relational database
tables uses the MUMPS global array name as the
name of the relation and the indices (in string valued
form) as the column values." According to O'Kane,
in "this approach the MUMPS Global Array data
base is envisioned as collections of facts concerning
a subject area. . .. no data i2jtored at the terminal
node of a path description."

Information Builders, Inc. provides :!TRfthod for
describ~.f DSM globals to the FOCUS database
system. The FOCUS file descriptions amount to a
view determined according to user requirements.

Using a form of entity-relationship (ER) modeling,
Milan and Major demonstrate how "a lo~al data
model may be mapped onto M globals." Milan
and Major explicitly address the concepts of entities,
relations, and attributes.

FileMan and SOL

Dealing with SQL access to FileMan and other M
databases requires treatment of the following:

June 1993

o Global mapping to support SQL access to
FileMan and to other M databases

o M global mapping in general

o Autom.<ttion of SQL global mapping for
FileMan data dictionaries

o SQL and FileMan naming and data types

o Comparison of SQL and FileMan query
capabilities

o Referential integrity support

Among the problems encountered with FileMan
global mapping is the nature of identifiers, such as
file and column names in FileMan and table and
attribute names in SQL. The following rules apply
to an SQL standard identifier; it:

o Must begin with a letter

o Can continue with letters or digits, and may
include embedded underscores

o Can not be identical to an SQL key word

o Can not exceed 18 characters.

Note that this paper uses the term identifier
according to SQL usage.

The following rules apply to a FileMan file name:

o Uses a free text data type

o Must be 3 to 30 characters in length

o Can not have a punctuation mark as the
initial character

o Can include embedded blanks

In some FileMan and SQL interface models, all
FileMan embedded blanks are translated into
embedded underscores in SQL and vice versa,
although this practice is vulnerable to name conflict
problems in the event that a translated name should
be the same as a table name already created using
the underscore character. Other special characters
and problems involving the length of the identifier
require special handling.

Duplicate . 01 field values and duplicate records are
permitted in FileMan, so an SQL base table derived
from a FileMan file could not merely consist of the
.01 column and all single-valued columns. FileMan
records are unique, but that uniqueness is not
dependent on .01 field values.

SQL tables can have primary keys and only a single
row with a given value (or set of values) in a table.
In contrast, in any attempt to identify FileMan rows
without using the internal entry number, four
elements come into consideration:

The .01 field of the file

The unique number or row id of the record (.001
field), called internal entry number (IEN) in
FileMan terminology

Identifiers, according to FileMan terminology,
declared for a file and used in lookup

Fields declared as mandatory, some of which
may be identifiers

In fact, the true unique primary key of a FileMan
file is the internal entry or record number (.001
field). Open M/SQL and KB SQL, which are based
on M, support accessible record numbers.

M COMPUTING 27

FileMan explicitly supports only a single attribute,
the internal entry number, to serve as a key for a
file. There is no restriction on storing composite
structures in fields. By convention, some FileMan
.01 columns contain values that are composite
structures, such as names (Last,First). Use of
numeric keys requires special handling (.001 field).

You can represent subfiles as tables, at least
conceptually, using appropriate mapping. Project
out all multiple-valued FileMan columns to become
base tables. Subfiles thus become tables. Subfiles
scope naming so naming conflicts can arise when
files are decomposed into sets of tables. A subfile
could have the same name as a file at the same site.
Concatenation conventions are required for
automated table and field naming in creating tables
based on subfiles. Internal entry numbers for the file
and each subfile level are required to identify
records developed from subfiles.

Intersystems Corporation and KB Systems, Inc.,
have both implemented automatic global mapping
facilities to support SQL interfaces to FileMan
databases . ..,_

Supporting Object Data Management

Implementors of object data management systems
based on M treat persistent objects as arrays
(syntactically as subscripted variables). The "general
approach• of implementers to supporting the object
programming paradigm object programming based
on M has been •~ use Globals as the sto2a;t,e area
for object data.• Garcia and Supakkul assert
that in M "any global (in conjunction with the
global module) is an example of an object with a
high level of functionality (service) that can be
demanded of an M system relative to that global.•

You can design a subtree of an M array to represent
state, properties, rules, and conditions, and to store
components of ~orithms or entire programs of
executable code. You can easily use such arrays to
represent state transition diagrams. You can treat
subtree pathways as relations for the purpose of
testing non-procedurally for existence (as in
Prolog). Thus you can store specification, current
state, and operations for a given object according to
an arbitrary indexing strategy for a classification or
identification system. You can replicate structures of
this type in any standard M implementation, because
all "pointers" are symbolic.

Although you can store executable code in the
arrays, designers of object system prototypes usually
implement methods in M routines. In an M system,
the routine is the unit of stored programming. You
may store portions of code in arrays and then
specify run-time selection and retrieval of specific
portions of a program from an array. The M
standard supports syntax for six varieties of
indirection. Partial indirection (indirection in

June 1993

specifying global references) is particularly valuable
to implementors and application designers in
supporting object-oriented environments.

Three examples of implementations of object
oriented environments based on M are EsiObjects
(Educational Systems, Inc.), the object approach of
Omega Computer Systems, Inc., and MOOPS
(MGlobal International, Inc.). EsiObjects and
MOOPS use extensions of the standard M language
in order to include object-oriented constructs. Some
of these extensions are formally proposed extensions
to the ANSI/MDC Xl 1.1 standard and some are
vendor specific. Omega uses extrinsic functions and
standard M.

EsiObjects29 uses the following object hierarchy:
(1) universal, (2) class, (3) instance, and (4)
temporary, of which the first three elements of this
hierarchy are based on M globals. EsiObjects
implements a preprocessor that verifies code,
expands extensions, controls programming
conventions, and enforces encapsulation. The
preprocessor has optimizing capabilities that deal
with such needs such as performance in single and
multiple inheritance searching. Browsers allow
exploration and modification of the structure of
objects.

In looking forward to the next Xl 1 standard,
EsiObjects incorporates the use of standard
structured system variable names (ssvns) which
permit standard structure definition that is
independent of vendor implementation.

Omega Computer Systems30 uses M globals directly
in its object data management approach. This
implementation evolved from an effort to develop
tools and achieve reusability and is used with a
specific group of applications. In this
implementation the creation of a metaclass enables
you ~o write a generalized M routine to "be
applicable to all classes which are instances of the
metaclass. " This approach ties class representation
directly to global array structure, as Example 6
shows.

Example 6

AVENDOR(ID) = data fields
AGLCHART(ACCT) = data fields

Example 6 uses AVENDOR for the Vendor
Demographics Class and AGLCHART for the
General Ledger Chart of Accounts Class. Omega
Computer Systems, which markets a law firm
package, looks forward to being able to modify
components of its package without extensive
rewriting of major parts.

MGlobal presents ~rject and shared variables in the
MOOPS product syntactically as M local

M COMPUTING 29

variables but the system implements these kinds of
variables as global variables of restricted classes.
The complete hierarchy of variables in MOOPS is as
follows: (1) bound, (2) method, (3) object, (4)
shared, and (5) global. In MOOPS, ordinary M
globals are accessible in object routines. A class is
represented as an M routine incorporating all the
methods associated with the class. lmplemention
specific commands permit establishment of a
hierarchy of classes and of variables shared by
objects instantiated from a class.

The MUMPS Development Committee is consulting
the experience of these and other implementations in
the process of M standardiz.ation.

Conclusion

This paper has described the general practice of
global mapping in M computing environments, with
a focus on two topics of current interest: (1) support
for relational database systems, (2) support for
heterogeneous environments involving FileMan and
SQL, and (3) object data management. Global
mapping constitutes a data definition strategy for a
given database. Database systems use global
mapping to relate complex logical structures
required for applications to the relatively simple
platform offered by M arrays.

Trademarks

1

2

3

DASL, DSM, and VAX/VMS are trademarks of
Digital Equipment Corp.

FOCUS for VAX/VMS is a trademark of
Information Builders, Inc.

KB SQL is a trademark of KB Systems, Inc.
Open M/SQL is a trademark of InterSystems

Corp.
MUMPS is a trademark of Massachusetts

General Hospital
Trustware is a trademark of National Computer

Systems

Object Data Management Reference Model.
(ANSI Accredited Standards Committee. X3,
Information Processing Systems.) Document
Number OODB 89-01R8. 17 September 1991.

R. A. Greenes, A. N. Pappalardo, C. W.
Marble, and G.O. Barnett, "A System for
Clinical Data Management," Proc. Fall Joint
Computer Conference (Montvale, NJ: AFIPS
Press, 1969), p. 301.

J. Bowie and G. Octo Barnett, "MUMPS -- An
Economical and Efficient Time-Sharing System
for Information Management," Computer
Programs in Biomedicine 6 (1976): 17.

30 Ill COMPUTING

4

5

6

7

8

9

Gordon C. Everest, Salvatore T. March,
Magdy S. Hanna, and Mark N. Sastry, "An
Analysis of the Data Representation Constructs
of the ANSI NDL and SQL Standards,"
Computer Standards and Interfaces 10 (1990):
3-27.

Wolfgang Giere, BAIK: Befunddokumentation
und Arztbriefschreibung im Krankenhaus
(Taunusstein, Germany: Media, 1986).

Joop Duisterhout, Berend Franken, and Frans
Witte, "AIDA: A Set of Software Development
Tools for Building Information Systems,"
MUG Quarterly 15, 2 (1985): 29-32.

Tatsuhiro Uchida and Donald A. Smith, "Set
GNOSIS = MUMPS + Prolog," MUG
Quarterly 15, 3 (1985-86): 14-19.

Sally Webster, Mary Morgan, and G. Octo
Barnett, "Medical Query Language: Improved
Access to MUMPS Databases," MUG
Quarterly 16, 4 (1987): 9-11. Sally Webster,
Mary Morgan, and G. Octo Barnett, "Medical
Query Language: Improved Access to MUMPS
Databases," Proceedings of the Eleventh
Annual Symposium on Computer Applications
in Medical Care, Washington, DC (IEEE,
1987), pp. 306-309.

Darrell W. Simmerman, "The Data Base
MUMPS System - DBMpS," MUG Quarterly
15, 4 (1986): 37-38. \.

lO Kyle A. Lindner, David J. Whitten, Linda
Elting, and Gerald P. Bodey, "Ntelligence: A
FileMan-based Expert System," MUG
Quarterly 20, 1 (1990): 64-67.

11 Robert D. Andrews, "A Common Data
Structure for Complex Clinical Data," MUG
Quarterly 20, 1 (1990): 49-53.

12 Edward J. McIntosh, "A Model for Interfacing
MUMPS and SQL," MUG Quarterly XX, 1
(1990): 14-20.

13 E. J. Yannakoudakis, The Architectural Logic
of Database Systems (London: Springer,
1988), pp. 205-210.

14 Barry E. Jacobs, Applied Database Logic I:

15

Fundamental Database Issues (Englewood
Cliffs, NJ: Prentice-Hall, 1985), pp. 59-84.

Charles S. Volkstorf, The MUMPS Handbook
of Efficiency Techniques (College Park, MD:
MUG, 1985).

June 1993

16

17

18

19

20

21

22

23

Richard F. Walters, "Database Optimiz.ation:
A Overview," MUMPS Computing 22, 5
(November 1992): 52-59.

Dave Middleton, "Query Optimiz.ation in
MUMPS," MUG Quarterly 21, 3 (June 1991):
32-39.

Michael R. Pantaleo, Relational MUMPS: A
practical approach for designing relational
database systems (Cambridge, MA:
Intersystems, 1991).

Open MISQL: A Gentle Introduction
(Cambridge, MA: InterSystems, 1991).

KB_SQL Database Administrator's Guide
(Herndon, VA: KB Systems, 1991).

William J. Harvey, "Implications of Non-lNF
Extensions to the Relational Database Model
for the MUMPS Standard and MUMPS
Databases," Proceedings of the 15th MUMPS
Users,......Group of Japan, Supplement (Nagoya:
MUG-Japan, 1988), pp. 2-22.

K. O'Kane, "Design for a Relational Database
System in MUMPS," MUG Quarterly 15, 2
(1985): 33-37.

K. O'Kane, "A Portable Hybrid MUMPS
Development System Host," Proceedings of the
Seventh International Computer Software and
Applications Conference (Silver Spring, MD:
IEEE Computer Society, 1983).

24 Focus for VAX!VMs™: Inte,face to Digital
Standard MUMPS, Release 6.1 (New York,
NY: Information Builders, Inc., 1991).

25

26

27

28

June 1993

J. Milan and D. G. Major, "MUMPS and Data
Modelling," MUG Quarterly 15, 4 (1986): 27,
29-31, 33-34.

ANSI/MDC Xll/SC15/TG2/91-2, "Object
Oriented MUMPS Program Enhancement." 26
December 1991.

Alfredo Garcia and Somboon Supakkul,
"Object-oriented Programming in MUMPS,"
Proceedings of the Fifteenth Annual Meeting of
the MUMPS Users' Group - Europe, pp. 21-27"
(Rotterdam: MUG-E, 1990), pp. 21-27.

Bill Harvey and Bob Skovira, "Information
Modeling Using Associative Global Arrays in
MUMPS," Object Oriented ReasonJng in
Information Modeling (Proceedings of
OOPSLA Workshop), Haim Kilov and Bill

29

30

31

Harvey, eds. (Coraopolis and Pittsburgh, PA:
Robert Morris College, 1992), 17-19.

Terry L. Wiechmann and Jerry Goodnough,
"EsiObjects: An Object Oriented Application
Development Environment" (Bolton, MA:
Educational Systems, Inc., 1992).

Don Gall, "Object Oriented Programming,
MUMPS and the Real World" (Phoenix, AZ:
Omega Computer Systems, Inc., 1992).

Frank M. Brown, "MOOPS 0.2 - MUMPS
Object Oriented Programming System,
Programmer's Reference Manual" (Houston,
TX: MGlobal International, Inc., 1991).

MUMPS Bridgeware is the fastest way to convert the source code of your
original MIIS programs with 100% accuracy.

MUMPS Bridgeware also tramfers your Database at 20 Mbytes/h,
decoding the original disk blocks into MSM or MUMPSNM disk blocks.

Let MUMPS Bridgeware protect your software investment. We
guarantee your satisfaction and minimum down-time.

The only thing your users will notice is increased system performance.

~ .I C: CompScientia , . I

~ Rua Bar~ do Flamcngo, 3Z - 6° andar ' •
~ ZZZZ0-080 - Rio de Janeiro - RJ - Brazil

Phone 55 Zl 20544Z3 • Fu: 55 21 285-7852

More than 100.000 programs converted

Ill COMPUTING 31

