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Abstract 

This paper introduces MUMPS techniques for generating 
pseudorandom variates from known probability 
distributions. It briefly discusses five methods for 
generating random variates and briefly describes twenty 
common distributions with typical examples. For your 
use, an attachment provides MUMPS extrinsic functions 
for generating pseudorandom variates from each of the 
twenty described distributions. Another attachment 
presents plots of generated random variates from typical 
examples of each of the twenty distributions. 

Introduction 

The ability to generate pseudorandom variates from known 
distributions can be useful for a variety of purposes. The 
author has encountered at least three situations where this 
usefulness has been demonstrated. 

When conducting statistical analyses on sets of real data, 
for example, clinical patient data, the problem of missing 
data points must often be overcome. One useful way of 
dealing with the problem of missing data is to simply 
generate pseudorandom values for the missing data points. 

Developing MUMPS routines for conducting statistical 
analyses requires sets of data for prototyping and validat­
ing the routines. Collecting real data for this purpose can 
be a tedious process. It is often simpler and more conve­
nient to generate pseudorandom data sets. 

Computer modeling and simulation can be a useful tool 
for studying a variety of processes, for example, simulating 
patient processing and waiting times in a clinic, or 
modeling unscheduled down time of a computer system. 
The ability to simulate data is essential for these activities. 

The following sections of this paper discuss some common 
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methods for generating pseudorandom data with known 
distribution characteristics and briefly describe twenty 
commonly used distributions. 

Attachment A contains two MUMPS routines, sample and 
math. The routine named sample contains extrinsic func­
tions for generating random samples from each of the 
twenty distributions. The routine named math contains 
extrinsic math functions that are required for some of the 
extrinsic sampling functions. It should be noted that the 
routine named sample makes use of MDC Type A exten­
sions to the 1990 ANSI/MDC XI 1.1 MUMPS standard, 
specifically, exponentiation (x**y). 

Attachment B contains descriptions of the calling param­
eters for each of the extrinsic saiupling functions and 
plots of sample variates generated using typical param­
eters for each of the twenty distributions. 

It is important to note that the term pseudo random is used 
in this paper, because computer generated random values 
cannot be truly random. It is also important to note that 
each algorithm presented in this paper for generating 
pseudorandom variates ultimately depends on the 
$RANDOM intrinsic function. The quality of variates 
produced by these algorithms depends on the quality of 
the random number generator of the underlying MUMPS 
implementation. 

Inverse Transformation Method 

This method is based on the observation that for any 
random variable x with a cumulative density function 
F(x), the variable u = F(x) is uniformly distributed be­
tween O and 1. Therefore, x can be obtained by generating 
uniform random numbers between O and 1 and computing 
x = F-1(x). This method can be used to generate random 
variables with distributions for which F-1 can be deter­
mined either analytically or empirically. 
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For example, exponential variates can be generated using 
the inverse transformation method. The probability den­
sity function (pdf) for the exponential distribution is 
given by the following: 

f(x) = Jc•x 

The cumulative density function (CDF) for the exponen­
tial distribution is given by the following: 

F(x) = 1-e-h = u 

Inverting the CDF, we get the following: 

x = -ln(J-u)/J. 

Because u is uniformly distributed between O and 1, 1-u is 
also uniformly distributed between O and 1. Therefore, 
we can simplify the inverted equation to the following: 

x = -ln(u)/J. 
"'\ 

Using this last equation we can generate random exponen­
tial variates x. from random uniform variates u .. 

1 l 

Acceptance/Rejection Method 

An acceptance/rejection method can be used to generate 
random variates from the distribution f(x) if another dis­
tribution cg(x) majorizes or envelopsf(x). That is, cg(x) 
c: f(x) for all values of x. 

For example, consider the distribution beta(J.5,5). We 
can use c = 3 and g(x)=I to majorize the beta distribution 
as the following illustration shows: 

4.0 

3.J cg(x) =3 

2.0 - Rejection 

101 k-~ ' Region 

Region 
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We can then generate two uniform random variates; x on 
the interval from O to 1, and y on the interval from O to 3. 
If the point (x,y) falls above the beta density functionf(x), 
we reject it. If the point falls below f(x), we accept it and 
return x as a random beta variate. 

Composition Method 

If the CDF F(x) can be expressed as a weighted sum of n 
other CDF's, F/x), Fz(x), ... , F/x), then we can use the 
composition method for generating random variates. 
Consider the following example: 

F(x) = p1F/x) + p 2Fz(x) + ... + pnF/x) 

In this example, F;(x) is one of the component distribu­
tions and P; is the proportional weight for the component 
distribution such that the sum of the p/s is one. Using this 
example, we can generate random samples from the dis­
tribution F(x) by sampling from each of the component 
distributions FJx) in turn with the probability P;-

Convolution Method 

If a random variable x from a distribution can be ex­
pressed as a sum of n random variables y1, y2, ••• , Yn, then 
a random variate x can be generated by simply generating 
n random variates Y; and then summing them. That is, 

X = Y1 + Y2 + ·•• + Yn 

For example, an Erlang(k) random variate is the sum of k 
exponential random variates. A binomial variate with 
parameters n and p is the sum of n Bernoulli variates with 
probability p. A chi-square variate with v degrees of 
freedom is a sum of squares of v unit normal variates. 

The most well known example of this method is embodied 
in the Central Limit Theorem, which states that the sum of 
a large number of variates from any distribution is nor­
mally distributed. 

Characterization Method 

Some distributions have special characteristics that allow 
variates to be generated using algorithms specially tailored 
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for them. This method is known as characterization. 

For example, the ath smallest number in a sequence of a 
+ b + I uniform(O, I) variates has a beta(a,b) distribution. 
A chi-square variate with even degrees of freedom vis the 
same as a gamma variate with parameters 2 and v/2. If XI 

and x
2 

are two gamma variates with parameters (a,b) and 
(a,c), then the ratio xI I (xI + x

2
) has a beta distribution 

with parameters b and c. 

Commonly Used Distributions 

Twenty probability distributions will now be briefly de­
scribed. These distributions are commonly used in the 
areas of statistical analysis and computer simulation. 
MUMPS extrinsic functions for generating sample vari­
ates from each of these distributions are presented for 
your use in Attachment A. In attachment B, you will find 
descriptions of the calling parameters for each extrinsic 
sampling function, notes on the characteristics of each 
distribution and plots of sample variates using typical 
parameters for each distribution. 

Bernoulli distribution The Bernoulli distribution is the 
simplest discrete distribution. A Bernoulli variate can 
take only two values, 0 and 1, or failure and success. The 
Bernoulli distribution is used to model the prnbability of 
an outcome having a desired characteristic, for example, 
the likelihood that a computer system is up or down. See 
Figure 1. 

Beta distribution The beta distribution is used to repre­
sent random variates that are bounded, for instance, be­
tween O and 1. The beta distribution can be bell shaped, 
symmetric or asymetric, U-shaped, or linear. The beta 
distribution can be used to model random proportions, for 
example, the fraction of ethernet packets requiring 
retransmission. The beta distribution is often used by 
Bayesian statisticians in decision theory to model a prior 
distribution on which a subsequent binomial decision is to 
be based. See Figure 2. 

Binomial distribution The number of successes in a 
sequence of n Bernoulli trials has a binomial distribution, 
for example, the number of ethernet packets that reach 
their destination without data loss, or the number of face 
cards received in a hand of poker. See Figure 3. 
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Chi-square distribution The chi-square distribution is 
used whenever a sum of squares of normal variables is 
involved. For example, the chi-square distribution could 
be used to model sample variances. See Figure 4. 

Erlang distribution The Erlang distribution is often used 
in queueing models. It is commonly used to model patient 
examination durations in a clinic with n physicians. See 
Figure 5. 

Exponential distribution The exponential distribution is 
used extensively in queueing models. For example, it 
might be used to model patient arrival times in a medical 
clinic, or the times between successive failures of a 
device. The exponential is unique among continuous 
distributions in that it is memoryless, the time since the 
last event does not help in predicting the time until the 
next event. See Figure 6. 

F distribution The ratio of two chi-square variates has an 
F distribution. The F distribution is used to measure the 
ratio of sample variances. This distribution is used exten­
sively in statistics for regression analysis and analysis of 
variance (ANOV A). See Figure 7. 

Gamma distribution The gamma distribution is a gener­
alization of the Erlang distribution where the defining 
parameters are not restricted to integers. The gamma 
distribution is used to model service times or activity 
durations in a manner similar to the Erlang distribution. 
See Figure 8. 

\.-

Geometric distribution The distribution of the total num­
ber of Bernoulli trials required to obtain the first success 
is referred to as the geometric distribution. This distribu­
tion is the discrete equivalent of the continuous exponen­
tial distribution. An example of the use of the geometric 
distribution is modeling the number of successfully trans­
mitted ethernet packets between packets requiring 
retransmission. The geometric distribution is memoryless 
in the same way as the exponential distribution. See 
Figure 9. 

Lognormal distribution The natural logarithm of a nor­
mally distributed variate has a lognormal distribution. 
The Central Limit Theorem, which states that additive 
processes are normally distributed, can be used to show 
that multiplicative processes have a lognormal distribu­
tion. This distribution is used to model a great variety of 

June 1993 



processes in areas from biology to economics, for ex­
ample, personal incomes, bank deposits, and particle 
sizes. See Figure 10. 

Negative Binomial distribution The number of failures x 
in a sequence of Bernoulli trials before the mth success is 
obtained has a negative binomial distribution. An ex­
ample of the use of the negative binomial distribution is 
modeling the number of error-free patient medications 
before some critical number of medication errors occurs. 
See Figure 11. 

Normal distribution The normal distribution or Gaussian 
distribution is the most prominent distribution in prob­
ability and statistics. The normal distribution is appropri­
ate whenever the randomness is caused by several inde­
pendent sources acting additively. See Figure 12. 

Pareto distribution The Pareto distribution is a power 
curve that can be easily fit to observed data. It has 
sometimes been used to describe income distributions. 
See Figure 13. ..._ 

Pascal distribution The number of Bernoulli trials re­
quired to obtain m successes has a Pascal distribution. 
The Pascal distribution is an extension of the geometric 
distribution. For example, the Pascal distribution might 
be used to model the total number of attempts required to 
successfully send m packets across an ethernet. See 
Figure 14. 

Poisson distribution The Poisson distribution is a limit­
ing form of the binomial distribution. That is, it is 
analogous to the binomial distribution where the number 
of trials approaches infinity. The Poisson distribution is 
extensively used in queueing models to describe the num­
ber of arrivals over a given time interval, for example, the 
number of disk drive failures in a computer system over 
a year, or the number of walk-in patients arriving in a 
clinic over a year. See Figure 15. 

Student's t distribution The student's t distribution is used 
whenever the ratio of a normal variate and the square root 
of a chi-square variable is involved. This distribution is 
commonly used in statistics in t-tests and for setting 
confidence intervals when estimating statistical param­
eters. See Figure 16. 

Triangular distribution The triangular distribution is 
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used whenever a variable's estimated value is described 
by a minimum, a maximum, and a mode. The triangular 
distribution is sometimes used in PERT/CPM analysis 
when activity durations are estimated by an optimistic 
time, a pessimistic time, and a most likely time. See 
Figure 17. 

Uniform distribution (continuous and discrete) A uni­
form distribution specifies that every value between a 
minimum and maximum is equally likely. It generally 
implies a complete lack of knowledge concerning the 
random variable other than the minimum and maximum 
allowable values. If the variable can take on any value 
between the minimum and maximum, the distribution is 
continuous. See Figure 18. If the variable can only take 
on integer values, the distribution is said to be discrete. 
See Figure 19. A common use of the uniform distribution 
is describing the seek times for a disk drive. 

Weibull distribution The Weibull distribution is com­
monly used in reliability analysis. For example, the 
distribution is commonly used to model lifetimes of com­
puter components. See Figure 20. 

Summary 

This paper has presented MUMPS extrinsic functions for 
your use for generating variates from twenty common 
probability distributions. The author has found these 
functions to be useful in a variety of situations. These 
include generating values to deal with the problem of 
missing data in statistical analyses, generating sets of data 
for prototyping and validating statistical analysis rou­
tines, and simulating data for computer modeling. It is 
hoped that you will find these to be useful as well. 
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Attachment A 

Routine sample: Extrinsic Functions for Generating Random Samples 

sample ;agb;08:31 PM 15 Dec 1992 
; generate random sample variates 

bernoull(p) ;bernoulli distribution 

q: '$d(p) "" 
q:p<0 ! (p>l) "II 

q $$random() '>P 

beta(alpha,beta,min,max) ;beta 
q: 1 $d(alpha) ! 1 $d(beta) 1111 

q:alpha'>0 "" 
q:beta'>0 "" 
i '$d(min) n min s min=0 

i '$d(max) n max s max=l 

distribution 

q:max'>min "" 
i alpha<l&(beta<l) n x,y d q +$j(x/(x+y)-min/(max-min),0,6) 
.f s x=$$random()**(l/alpha) ,y=$$random()**(l/beta) q:x+y'>l 

n gammal,gamma2 
s gammal=$$gamma(l,alpha) ,gamma2=$$gamma(l,beta) 
q +$j (gammal/(gammal+gamma2)-min/(max-min) ,0,6) 

binomial(p,n) ;binomial distribution 
q: 1 $d(p) ! 1 $d(n) 1111 

q:p'>0! (p'<l) 
q: n\l' =n! (n' >0) 
n i, sum 

1111 

1111 

s sum=0 f i=l:l:n s sum=sum+($$random()<p) 

q sum 

chisquar(df) ;chi-square distribution 

q: I $d(df) "" 
q:df\l'=df! (df'>0) 1111 

i df=l q +$j ($$normal (0, 1) **2, 0, 6) 
i df#2 q +$j($$normal(0,1)**2+$$chisquar(df-l) ,0,6) 

n i,prod 
s prod=l f i=l:l:df/2 s prod=prod*$$random() 
q +$j(-$$lnAmath(prod)/2,0,6) 

erlang(alpha,m) ;erlang distribution 
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q: '$d(alpha) ! 1 $d(m) 1111 

q:alpha' >0 1111 

q:m\l '=ml (m' >0) 
n i,prod 

"" 

s prod=l f i=l:l:m s prod=prod*$$random() 
q +$j (-alpha*$$lnAmath(prod) ,0,6) 

'-
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Attachment A 

Routine sample: Extrinsic Functions for Generating Random Samples (continued) 

exponent(alpha) ;exponential distribution 

q: ' $d ( alpha) "" 
q:alpha'>0 "" 
q +$j(-alpha*$$lnAmath($$random()) ,0,6) 

f(dfn,dfm) ;f distribution 
q: '$d(dfn) !'$d(dfm) "" 
q:dfn\l'=dfn! (dfn'>0) "" 
q:dfm\l'=dfm! (dfm'>0) "" 
q +$j (($$chisquar(dfn)/dfn)/($$chisquar(dfm)/dfm),0,6) 

gamma(alpha,beta) ;gamma distribution 
q: '$d(alpha) ! '$d(beta) '"' 
q:alpha'>0 "" 
q:beta'>0 "" 

·"'\ i beta\l=beta q +$j ($$erlang(alpha,beta) ,0,6) 
i beta<l q +$j(alpha*$$beta(beta,l-beta)*$$exponent(l) ,0,6) 
q +$j ($$gamma(alpha,beta\1)+$$gamma(alpha,beta-(beta\l)) ,0,6) 

geometri(p) 
q:'$d(p) 

;geometric 
n n 

q:p'>0! (p'<l) '"' 
n g 

distribution 

s g=$$lnAmath($$random())/$$lnAmath(l-p) 
s:g\l'=g g=g+l\l 
q g 

lognorml(mean,sd) ;lognormal 
q: '$d(mean) ! '$d(sd) 
q: mean<0 "" 
q:sd' >0 "" 

distribution 

"" 

q +$j ($$expAmath(sd*$$normal(0,l)+mean) ,0,6) 

negbinom (p, m) ;negative binomial distribution 
q: '$d(p) ! '$d(m) '"' 
q:p' >0 ! (p' <l) 
q:m\l '=ml (m' >0) 
n fail,pass 

1111 

1111 

s (fail,pass)=0 f 
.i $$random()>p s 
. s pass=pass+l 
q fail 

d q:pass=m 
fail=fail+l q 
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Attachment A 

Routine sample: Extrinsic Functions for Generating Random Samples (continued) 

normal(mean,sd,n) ;normal distribution 
q: '$d(mean) ! '$d(sd) "" 
q:sd'>0 
n i, sum 

"" 

i 1 $d(n) n n s n=12 
s sum=0 f i=l:l:n s sum=sum+$$random() 
q +$j (sum-(n/2)/((n/12)**.5)*sd+mean,0,6) 

pareto(alpha) ;pareto distribution 

q: '$d(alpha) "" 
q:alpha'>0 "" 
q +$j(l/($$random()**(l/alpha)) ,0,6) 

pascal(p,m) ;pascal distribution 

q: 1 $d(p) ! '$d(m) 
q:p'>0! (p'<l) 
n i,sum 

"" 
"" 

s sum=0 f i=l: 1 :m s sum=sum+$$geometri (p) 

q sum 

poisson(lambda) ;poisson distribution 

q: ' $d ( lambda) "" 
q:lambda'>0 "" 
n crit,n,prod 
s crit=$$expAmath(-lambda),prod=l 
f n= 0 : 1 s prod=prod *$$random () q: prod<cri t 

q n 

random () ; random (uniform 0 to 1) 
q $r(l00000l)/l000000 

t ( df) ; student's t distribution 
q: I $d(df) 1111 

q:df\l'=df! (df'>0) 1111 

q +$j ($$normal (0, 1) / ( ($$chisquar(df) /df) ** .5), 0, 6) 

triangle(min,mode,max) ;triangular distribution 
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q: • $d (min) ! '$d (mode) ! '$d (max) 

q:max' >min "" 
q:mode<min! (mode>max) 
n crit,rndm 

"" 

1111 

s crit=(mode-min)/(max-min) ,rndm=$$random() 

i 
q 

rndm'>crit q +$j (min+((mode-min*(max-min) *rndm)**.5) ,0,6) 
+$j (max-((max-mode*(max-min)*(l-rndm))**.5) ,0,6) 
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Attachment A 

Routine sample: Extrinsic Functions for Generating Random Samples (continued) 

uniformc (min, max) ;uniform distribution (continuous) 

q: 1 $d(min) ! '$d(max) 1111 

q:max' >min 1111 

q +$j (max-min*$$random()+min,0,6) 

i 
uniformd (min, max) ;uniform distribution (discrete) 

q: '$d(min) ! '$d(max) 1111 

q:min\1 '=min "" 
q:max\1' =max "" 
q:max' >min "" 
q max-min+1*$$random()+min\1 

weibull (alpha, beta) ;wiebull distribution 
q: 1 $d(alpha) !'$d(beta) 1111 

q:alpha'>O 1111 

4. 
q:beta'>O "" 
q +$j(alpha*(-$$lnAmath($$random(})**(l/beta)),0,6) 

Continued on next page 
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Attachment A 

Routine math: Extrinsic Math Functions Required for Sampling Functions 

math ;wlm,cfb,drh,agb;l2:04 PM 15 Dec 1992 

;math functions 

exp(x,pr) ;exponential 
q: '$d(x) 1111 

n l,m,n,o,p,y,lim 

s: '$d(pr) pr=6 s m=l 

s l=x,y=x+l 
s lim=$s(pr+3'>11:pr+3,l:ll) ,@( 11 lim=lE- 11 _lim) 

f o=2:l s l=l*x/o,y=y+l q:$tr(l,"-")<lim 
q +$j (y, 0, $s (pr-$1 (y\l) '<0 :pr-$1 (y\l), 1: 0)) 

gamma (x) ;gamma (factorial) function 

n % 

ln(x,pr) 

s %=,$s(x>2:x-1*$$gamma(x-l) ,x>l:$$pgamma(x-l) ,x>0:l/$$rgamma(x) ,l:
1111

) 

q + $ j ( % I 0 1 6 - $1 ( $p ( % 1 II • II ) ) ) 

;naperian 

q: 1 $d(x) 
q:x'>0 1111 

q:x=l 0 

logarithm 
1111 

n l,m,n,o,p,y,lim 

s: '$d (pr) pr=ll s m=l 
i X>0 f n=0:l q:x/m<l0 s m=m*l0 
i x<l f n=0:-1 q:x/m>.l s m=m*.l 

s x=x/m, (x,y,l)=x-1/(x+l) 
s lim=$s(pr+3'>11:pr+3,l:ll),@( 11 lim=lE- 11 _lim) ~ 
f o=3:2 s l=l*x*x,m=l/o,y=m+y s:m<0 m=-m q:m<lim 
q +$j (y*2+ (n*2 .30258509298749), 0, $s (pr-$1 (y\l) '<0 :pr-$1 (y\l), l: 0)) 

pgamma (x) ;polynomial approximation of gamma (l+x) 

q: 1 $d(x)!(X<0)!(X>l) 1111 

n b,g 
s b(l)=-.577191652,b(2)=.988205891,b(3)=-.897056937,b(4)=.918206857 

s b(4)=-.756704078,b(6)=.482199394,b(7)=-.193527818,b(8)=.035868343 

s b(0)=1,g=b(8) f b=8:-l:l s g=g*x+b(b-1) 

q +$j(g,0,6) 

rgamma(x) ;1/gamma(x) 
q: '$d(x) 1111 

n k,r 
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s 

s 

s 

s 

k(l)=l,k(2)=.5772156649015329,k(3)=-.6558780715202538 

k(4)=-.0420026350340952,k(5)=.1665386113822915 

k(6)=-.0421977345555443,k(7)=-.009621971527877 

k(8)=.007218943246663,k(9)=-.0011651675918591 
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Attachment A 

Routine math: Extrinsic Math Functions Required for Sampling Functions (continued) 

" 

s k(l0)=-.0002152416741149,k{ll)=.0001280502823882 
s k(l2)=-.0000201348547807,k{l3)=-.0000012504934821 
s k(l4)=.000001133027232,k(l5)=-.0000002056338417 
s k(l6)=.000000006116095,k(l7)=.0000000050020075 
s k(l8)=-.0000000011812746,k{l9)=.0000000001043427 
s k(20)=.0000000000077823,k(21)=-.0000000000036968 
s k(22)=.00000000000051,k(23)=-.0000000000000206 
s k(24)=-.oooooooooooooos4,k(25)=.0000000000000014 

s k(26)=.0000000000000001 
s k(0)=0,r=k(26) f k=26:-l:l s r=r*x+k(k-1) 

q +$j(r,0,10) 

Continued on next page 
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Attachment B 

Calling Parameters for MUMPS Extrinsic Sampling Functions and Plots of Typical Distributions 

Figure 1 Bernoulli Distribution 
s x=$$bernoul1Asample(p) 

p = probability of success, (p'<O)&(p'>I) 

Mean: p 
Variance: p* (1-p) 
Range: (x,O) ! (x,1) 

Plotsofl00,000Bemoulli variates; y-axis=sample density; x-axis=value 

1.0 

0.8 

0.6 

0.4 

0.2 

of variate; width of interval= 1. o.o 

Figure 2 Beta Distribution 
4.0 

s x=$SbetaAsampl e (alpha, beta) 3.0 

a 1 p ha = shape parameter, alpha>O 
beta= shape parameter, beta>O 2.0 

Mean: alpha/ (al pha+beta) 
Variance: (alpha* beta) ( ((al pha+beta) ** 2) 1.0 

* (alpha+beta+l)) 
Range: (x' <O)&(x',1) 

Plots of! 00,000beta variates; y-axis=sample density, truncatedabove4.0; 
x-axis= value of variate; width of interval = 0.01. 

4.0 4.0 

3.0 3.0 

2.0 2.0 

1.0 1.0 

0.0 o.o 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

beta(0.5,0.5) 

4.0 4.0 

3.0 3.0 

2.0 2.0 

1.0 1.0 

0.0 0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

beta (1, 1) 

Figure 3 Binomial Distribution 
0.4 

s x=SSb i nomi al A sample (p, n) 0.3 

p = probability of success in a trial, (p>O )&(p<I) 
n =numberoftrials, (n>O)&(n\l=n) 0.2 

Mea.n: n*p 
Variance: n* p* (1-p) 0.1 

Range: (x • <0) & ( x' > n) & ( x\l•x) 

Plotsofl00,000binomial variates; y-axis=sampledensity; x-axis=value 0.0 

of variate; width of interval= 1. 
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Attachment B 

Calling Parameters for MUMPS Extrinsic Sampling Functions and Plots of Typical Distributions (continued) 

Figure 4 Chi-Square Distribution 1.0 n.. 1.0 

s x=$$chisqual"'Asampl e(df) 
o.8 -HI 0.8 

df =degrees of freedom, (df>O)&(dfJ=l) o.6 -HII 0.6 

Mean: df o.4 -Hlllh 0.4 
Variance: 2*df 
Range: X' <0 0

·
2 fllllllllllhh,. 0.2 

Plots of 100,000 chi-square variates; y-axis= sample density, truncated 
above 1.0; x-axis=value of variate, truncated above 10.0; width ofinterval 0.0 

=0.1. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

chi-square (1) chi-square (5) 

Figure 5 Erlang Distribution 1.0 T 1.0 

s x=$$erlangAsample(alpha,m) 0.8~~ 
0.8 

a 1 p ha = scale parameter, alpha>O 0.6 0.6 

m = shape parameter, (m>O )&(m\1 =m) 
o.4 -IUlllllh_ 0.4 

Mea.n: alpha*m 
Variance: (alpha**2)*m 

0.2 -Hlllllllllllllh. 0.2 
Range: x' <0 

Plots of I 00,000 Erlang variates; y-axis =sample density, truncated above 
1.0; x-axis=valueofvariate;ft,mcatedabove 10.0; widthofinterval=0.l. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Erlang (1 , 1) Erlang (1,3) 

Figure 6 Exponential Distribution 2,Q Tl 2.0 

s x=$$exponentAsample(alpha) 1.5 rn 1.5 

alpha = scale parameter= mean, alpha>O 
1.0 Hlln 1.0 

Mean: alpha 
Variance: alpha** 2 
Range: X'<O o.5 mllllll" 0.5 

Plots of 100,000 exponential variates; y-axis= sample density, truncated 
above 2.0; X•axis = value of variate, truncated above 6.0; width ofinterval o.o JHIHHlffllltlHHOno, 0.0 

=0.1. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 

exponential (0.4) exponential (1) 

Figure 7 F Distribution 0.41 
0.4 

s x=SSfAsample(dfn,dfm) 0.3 0.3 

n = numerator degrees of freedom, (n>O)&(n\J=n) 
m = denominator degrees of freedom, (m>O)&(m\J=m) 0.2 i1_ 0.2 

Mean: dfm/(dfm-2) fordfm>2 
Variance: ( 2* ( dfm'* 2) * ( dfn+df m- 2)) / ( dfn* ( ( dfm2) 0.1 ill In 0.1 

'*2)*(dfm-4)) fordfm>4 
Range: x'<O o.o , n n II n nu u l[JOpoooc, ... 0.0 

Plots of 100,000 F variates; y-axis= sample density; x-axis= value of 0 10 20 30 40 50 0 10 20 30 40 50 

variate, truncated above 50; width of interval= 1. F (1,3) F (3,2) 

Figure 8 Gamma Distribution 1.6 I 1.6 

s x=$$gammaA sampl e(al pha, beta) 1.2 1.2 

alpha= scale parameter, alpha>O 
beta= shape parameter, beta.>0 o.8 HL 0.8 

Mean: alpha*beta 
Variance: (alpha**2)*beta o.4 mrnrn,_ 0.4 

Range: X' <0 

Plots of 100,000 gamma variates; y-axis= sample density; x-axis =value 0.0 

of variate, truncated above 6.0; width of interval= 0.01. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 o.o 1.0 2.0 3.0 4.0 5.0 6.0 

gamma(1,1) gamma(0.4,3) 
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Attachment B 

Calling Parameters for MUMPS Extrinsic Sampling Functions and Plots of Typical Distributions (continued) 

Figure 9 Geometric Distribution 
s x=$$geometriAsample(p) 

p = probability of success, (p>O )&(p<l) 

Mean: 1/p 
Variance: (1-p)/(p**2) 
Range: (x>O)&(x\1-x) 

Plots of I 00,000 geometric variates; y-axis=sampledensity; x-axis =value 
of variate, truncated above IO; width of interval = I. 

Figure 10 Lognormal Distribution 

s x=SSlognormlAsample(mean,sd) 

mean = mean of$$1og"rnath(x), mean'<O 
s d = standard deviation of$$log"math(x), sd>O 

Mea.n: SSexpAma th (mean+ (sd** 2) /2) 
Variance: SSexpAma th ( 2* mean+ (sd• * 2)) 

* (SSexpAmath(sd**2)-1) 
Range: X • <0 

Plots of l 00,000 lognormal variates; y-axis = sample density; x-axis = 
value of variate, truncated above 7.0; width of interval= 0.1. 

Figure 11 Negative Binomial Distribution 

s x=$$negbinomAsampl e(p, m) 

p = probability of success, (p>O)&(p<l) 
m = number of success, (m>O )&/m\1 =m) 

Mean: m• (1-p)/p 
Variance: m*(l-p)/(p**2) 
Range: (x>O)&(x\l•x) 

Plots of I 00,000negative binomial variates; y-axis =sample density; x-axis 
= value of variate, truncated above 20; width of interval = I. 

Figure 12 Normal Distribution 
s x=$$normal Asampl e(mean, sd) 

mean =mean 
sd = standard deviation, sd>O 

Mean: mean 
Variance: sd* * 2 
Range: unbounded 

Plots of 100,000 nonnal variates; y-axis= sample density; x-axis= value 
of variate, truncated below -5.0 and above 5.0; width of interval= 0.01. 

-5.O -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

normal (1, 1) 
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Attachment B 

Calling Parameters for MUMPS Extrinsic Sampling Functions and Plots of Typical Distributions (continued) 

Figure 13 Pareto Distribution 
2.Q T 2.0 

s x=$$paretoA sample (a 1 pha) 1S + 1.5 

a 1 p ha = shape parameter, alpha>O 
1.0 + 1.0 

Mean: alpha/(alpha-1) for alpha> 1 
Variance: alpha/(( (al pha-1)** 2)* (al pha-2)) 

foralpha >2 
0.51 

0.5 

Range: X' <1 

Plots of 100,000 Pareto variates; y-axis= sample density; x-axis= value 0.0 IlIIomm11111 o.o 
of variate, truncated above 10.0; width ofinterval = 0.1. 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Pareto(0.2) Pareto(2) 

Figure 14 Pascal Distribution 
0.4 0.4 

s x=$$pasca1Asample(p,m) 0.3 0.3 

p = probability of success, (p>O )&/p<l) 
m = number of successes, (m>O )&/m\1 =m) 0.2 0.2 

Mean: m/p 
Variance: m*(l-p)/(p**2) 0.1 0.1 

Range: (x' <m) &(x\l=x) 

Plots of 100,000 Pascal variates; y-axis = sample density; x-axis = value 0.0 0.0 

of variate, truncated above ill; width of interval = I. 2 • 6 8 10 12 14 16 18 20 2 • 6 8 10 12 14 16 18 20 

Pascal (0.5,5) Pascal (0.8,5) 

Figure 15 Poisson Distribution o.•, 0.4 

0.3 !Iii s x=$$poissonAsample(lambda) 0.3 

lambda =mean, lambda>O 
0.2 !Jim! 0.2 

Mean: lambda 
Variance: lambda 
Range: (x' <0)&(x\l•X) 0.1 !HFIH'I 0.1 

Plots ofl 00,000 Poisson variates; y-axis= sample density; x-axis= value 
of variate, truncated above 25; width of interval= 1. 0.0 0.0 

0 5 10 15 20 25 0 5 10 15 20 25 

Poisson(1) Poisson (10) 

Figure 16 Student's t Distribution ... I 0.4 

s x=$$tAsample(df) 0.3 Ah, 0.3 

df = degrees of freedom, (dj'>O)&/dfJ=df) 
0.2 + dlllllllllllllh 0.2 

Me.an: 0 
Variance: df/(df-2) 
Range: unbounded 0.1 + Jillllllllllllllllllllllllllll .. 0.1 

Plots of 100,000 t variates; y-axis= sample density; x-axis= value of 
o.o mm:anm111111111u1um1m1m11111111n11111nmnnmmnuuu1111111111111o(T)JQTTQ variate, truncated below -5.0 aud above 5.0; width of interval= 0.1. 0.0 

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

t (1) t(30) 

Figure 17 Triangu"lar Distribution •. o I 4.0 

s x=$$t ri angl eA sample (min, mode, max) 3.0 3.0 

mi n = lower limi.t 
mode = modal value, (mode'<min)&/mode'>max) 2.0 i --- 2.0 

max = upper limit, max>mi.n 

Me.an: (mi n+mode+max) /3 1.01 ,,mjjfjjjjlllllllllllllllllllllllllllllllllnh,,,_ 1.0 

Variance: ( (min* (min -mode))+ (max* (max-min)) 
+(mode*(mode-max)))/18 0,0 I iaJlll 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111:tn. 1 0.0 

Range: (x'<min)&(x'>max) 0.0 1.0 2.0 3.0 4,0 s.o 6.0 7.0 8.0 9.0 10.0 0.0 1.0 2.0 3,0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Plots ofl 00,000 lliaugularvariates; y-axis =proportion of variates; x-axis triangular (0,5, 10) triangular(0, 10, 10) 
= value of variate; width ofinterval = 0.1. 
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Attachment B 

Calling Parameters for MUMPS Extrinsic Sampling Functions and Plots of Typical Distributions (continued) 

Figure 18 Unifonn Distribution (Continuous) 
s x=$$uni formcAsampl e(min, max) 

mi n = lower limit 
max = upper limit, ma.x>min 

Mean: (max+mi n) /2 
Variance: ( (max-mi n+l) ** 2) /12 
Range: (x' <min)&(x'>max) 

Plotsof!O, 100, 1000, 10,000andl 00,000unifonncontinuous variates; y­
axis = sample density; x-axis= value of variate; width ofinterval = 0.01. 

2.0 

1,5 

1.0 

0.5 

0.0 

0.0 0.1 0.2 0.3 0."-1_ 0.5 0.6 0.7 0.8 0.9 1.0 

uniform (0, 1) - 1000 variates 

Figure 19 Unif onn Distribution (Discrete) 
s X=$$uni formdAsampl e (min, max) 

mi n = lower limit, min\1 =min 
max =upper limit, (max>min)&(max\l=max) 

Mean: (max+mi n) /2 
Variance: ((max-min+1)**2-1)/12 
Range: (x' <min)&(x'>max)&(x\1 ... x) 

Plots of 10,100, 1000, 10,000and 100,000 unifonndiscrete variates; y-axis 
=sarrg:,Je density; x-axis= value of variate; width of interval= 1. 

0.20 
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0.10 

0.05 

0.00 

7 
~ [[ii ~ ~ -

!iii il[ij> » t 

uniform (0, 10) - 1000 variates 

Figure 20 Weibull Distribution 
s X=$$weibul1Asample(alpha,beta) 

a 1 pha = sea.le parameter, alpha>O 
bet a = shape parameter, beta>O 

Mean: ( a 1 ph a/beta)* $$gammaflma th (1/beta) 
Variance: (alpha*,.. 2) (beta** 2) * ( 2* beta* $$gamma 

A math ( 2/beta) -($$gammaAma th ( 1/beta)) ** 2) 
Range: x' <0 

10 

Plots of 100,000 Weibull variates; y-axis =sample density, truncated above 
0.8; x-axis= value of variate, truncated above 10.0; widfu ofinterval = 0.1. 
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