
INTERFACING M

HL+: High-Level Languages Plus
Multilingual M Databases

by Cui Zhang and Richard F. Walters

Abstract
Neither conventional high-level programming languages nor
today's general purpose operating systems adequately sup­
port database systems. Furthermore, non-English language
databases are difficult to treat either in existing database sys­
tems or with current high-level languages because they re­
quire operations on multiple foreign-character sets in addi­
tion to ASCII. This paper describes a means for overcoming
these difficulties by accessing the shared-database features of
M from other high-level programming languages.

Extensions to this approach to accommodate processing of
mixed multiple foreign character strings also are described,
and examples of applications follow. This approach is a ma­
jor shortcut in developing sophisticated multilingual database
features, which are important for international database ap­
plications as well as applications of multilingual natural-lan­
guage processing.

Toward Better Database Management
General purpose computing environments are not optimal for
database management. Operating systems are designed to
meet general purpose needs, which often conflict with the
requirements of database applications. [1] Most high-level
programming languages lack fundamental features used in
database management, such as shared files and automated
collation, and persistent data types are unavailable. [2,3,4]

The shortcomings of both high-level languages and database
systems in processing English text are greatly magnified in
dealing with non-English databases. High-level languages
have failed to address questions of processing non-ASCII or
mixed-character string data. Foreign translations of database
management systems exist for some packages, but there are
no truly multilingual systems. Even the monolingual foreign
systems fail to provide essential features such as indexing and
collation according to natural-language conventions.

68 Al COMPUTING

International work groups are studying the standardization of
high-level language accommodation of foreign character sets
[5] and collation according to foreign language conventions
[6], but these efforts have not as yet resulted in extensions to
high-level languages or database management system
(DBSM) packages.

The 1990 ANSI Standard M language addresses many prob­
lems described above. English language database require­
ments are met through incorporating shared files ("globals")
as integral parts of the language. Collating ASCII text strings
is implicit through functions such as $ORDER. Manipulating
text strings is accomplished by a number of language opera­
tors (notably the pattern match-operator) and by functions
such as $EXTRACT and $PIECE. Its widespread availability on
many hardware and operating-system platforms makes it
ideal for distributed database systems in a heterogeneous en­
vironment. Recent language extensions further enhance this
feature by enabling Open MUMPS Interconnect (OMI) be­
tween different vendors' systems running in unique op-
erating-system environments. \;.

Despite these strengths, however, the attractive features of
the M language remain largely unknown outside the M user
community. Few computer science academic programs in­
clude M courses, and, as a result, few graduating computer
science majors know M's particular capabilities. Users of
many M-based commercial systems often are unaware of the
language behind their applfations.

There are probably several ways to heighten the external visi­
bility of M. One approach is to define areas in which other
programming languages are currently deficient, but in which
there is a real and growing international interest. Once find­
ing such areas, we should be able to extend the language to
solve the deficiencies quickly without requiring the client to
abandon more familiar high-level languages.

This article describes the effort to demonstrate that other
high-level languages can access the shared database inherent
in M globals, and that, through a series of primitive exten­
sions, this database can solve problems of processing multi­
ple natural languages within the same database.

April 1993

I
I

A UNIX-Based Shared-File System

The most significant feature of M with respect to DBMS is
its persistent, shared-data file structure consisting of a sparse,
tree-form array. M does not require declarations of arrays;
instead, it permits dynamic creation and modification of
arrays, which then are stored on disk in a shared file accessi­
ble by all users as soon as a node has been created or modi­
fied. Since these arrays are explicitly created by normal M
syntax, there is no need to open external files in order to retain
variables created during an M interactive session.

Multiple files can be maintained in a single shared file by
giving each "file" a different identifier. M shared files may
be viewed as an abstract data type whose internal structure is
transparent to the user. The functionality of this data type is
defined by the operations available through M commands and
functions. Users are able to ascertain the existence and name
of the next descendant subscript, the existence and name of
the next sibling sttbscript, and the presence and value of data
at the current node.

Taken together, M commands and functions allow users to
create and manipulate shared variables, usually consisting of
hierarchical structures closely resembling real-world data. It
solves the difficulty encountered in relational models at­
tempting to deal with non-first-normal form data [as in note
7]. As will be shown, this same functionality can be accessed
without requiring application programs to be written in M.

There are several steps leading to multilingual database-man­
agement functionality. First, an independent M shared-file
system was created for high-level languages to access. Next,
a set of utilities was created to enable operations on the shared

minit()
mhalt()
mset(''var(subscrl ,subscr2)" ,"datastmgl ")

mkill(''var(subscrl)")

mdata(''var(subscrl ,subscr2, ...)")

mget("var(subscr l ,subscr2,. . .)")

morder("var(subscr l ,subscr2)")
mquery("var(subscr 1)")

mlock("var(subscr 1)")

files. The multilingual capability resides in the shared files,
and additional utilities allow external users access to these
features. These steps are described in the next section.

Interface between M Globals and C
The M shared database (globals) in our laboratory is an inde­
pendent package written in C and running under UNIX on
bitmapped workstations. This package is independent of the
M interpreter, and users can access it from processes written
either in M or other high-level languages. Communication
among different processes takes place via the shared database
through message protocols that mimic the M functions. The
approach is akin to the client/server conceptual model de­
scribed by Domingo and others. [8] It offers many features
useful to a wide variety of database operations.

The HL + concept is accomplished by creating a set of utili­
ties that can be used by high-level languages to perform the
operations described above. Using C as an example, we have
created the following functions in Table 1 to interface to the
independent database system.

Using these functions, it is possible to interface programs
written in C to the HL+ database, performing complex tasks
on database entities that would be extremely difficult to
achieve without this functionality. Automated collation ac­
cording to the ASCII code set is implicit via the above func­
tions, and variables can be set, accessed, and retrieved for
subsequent examination and modification in C. Furthermore,
since many high-level languages can call C programs di­
rectly, the HL + functions described earlier could be implic­
itly extended to those languages by using the C utilities.

Figure 1 illustrates alternative solutions for accessing MUMPS
shared files from multiple HL + programming languages.

initializes interaction with the shared database manager.
terminates interaction with the shared database manager.
assigns the value of datastmg 1 to the node
var(subscrl ,subscr2)
kills the node var(subscrl) and its descendants, if any
exist.
returns information about the presence of data and descen­
dants for the node var(subscrl,subscr2, ...).
returns the data value, if any, for the specified variable
node. If none is present, returns a null value.
returns the next subscript at level subscr2.
returns the next complete subscript reference for var, using
a depth-first search.
locks the referenced node and its subscripts for data se­
curity.

Table 1. Interface to the independent database system.

April 1993 M COMPUTING 69

C PASCAL LISP

C-specific C-specific
...

C-specific

utilities utilities utilities

I I I

HL+Server

HL+abstract,
shared and persistent

data structure

(a)

C PASCAL LISP

C-specific PASCAL-
...

LISP-
utilities specific utilities specific utilities

I I I

HL+ Server

HL+ abstract,
shared and persistent

data structure

(b)

Figure 1. Alternative solutions for linking MUMPS shared
files to other high-level languages. The first (a)
illustrates a solution involving HL-specific
translation tables for each separate language. The
second (b) uses the ability of most languages to
call C functions to achieve the same goal.

In this manner, programmers in conventional high-level lan­
guages can gain access to the rich set of M database manage­
ment tools.

Multilingual Extensions to M Globals
As described thus far, the HL+ concept will perform data­
base functions on ASCII character sets, collated according to
the ASCII collation sequence. While this capability repre­
sents a significant improvement in database functionality, it
does not solve problems introduced by applications involving
natural-language processing where multiple character sets
are used. In a multicharacter-set environment, additional
functionality is required. Some key components include cre­
ating data strings in non-ASCII (or mixed) character sets,
creating subscripts in non-ASCII character sets, and collating
subscripts according to algorithms that match the collation
conventions of different natural languages.

Each natural language has one or more collation conventions.
Each convention is a separate algorithm encompassing a set
of collation rules used in dictionaries and other indexed lists
in a given natural language. Van Wingen points out that colla­
tion algorithms must include the following basic components
(applied differently in different natural languages) [9]:

70 Al COMPUTING

"--expansion:

~ontraction:

--equalization:

cleaning:

mapping:

transforming ligatures into a sequence of
single letters
transforming digraphs into a single tem­
porary letter (this involves a certain
risk ...)
transforming capital letters into small let­
ters, or certain accented letters into sim­
ple letters
removing irrelevant characters like
blanks from the key
transforming every single letter (as pro­
duced) into a character from the collating
sequence of the computer in the right
order."

To present a generalizable scheme in HL+ for incorporation
of many such collation algorithms, one (or more) for each
natural language, we define the following two functions:

HL+ Function Semantic Action

mnlcs(varnarne,"charset") defines charset for subscripts for the named variable
mcollate(varname,"collalgx") defines collation algorithm for the named variable

These two functions of the HL+ system enable the user
to specify any character set to serve as the primary set
for subscripts of a named variable, aRd then to select the
desired collation algorithm for ordering those subscripts.
The syntax need not be changed for data strings containing
non-ASCII characters with these functions (mset,
morder, ...).

HL+, as defined, is rather a polymorphic high-level
language that supports database management in a multilin­
gual natural language-processing environment. When the
HL + user specifies a valid pair of character set and
collation sequence, a semantic mapping ,for all DBMS
utilities, i.e., a semantic variation of the set of functions
specific to the desired character set and collation sequence,
results.

Figure 2 shows that the meta-information, describing the
natural-language character set and collation, is part of
the header information associated with specific global
variables.

Consequently, existing programs do not require change
for other data sets. The user need not be aware of the
semantic mapping, since as they are created, data are
added automatically according to the default conventions.

April 1993

This approach makes it possible to run the same set of
application programs on data sets containing different or
even mixed-character sets.

semantic I HL+ variation1,1

mappingl,l
for character set 1 and

collation algorilhmt
-standard

interface -
ofHL+ -

- semantic HL+ variatioDm,n

for character set mand
mappingm,n

collation algoritlmn

Figure 2. Conceptual model of polymorphic HL+ for
multilingual database management. Users can
employ the same code to access different
databases for multilingual applications.

"

~

An additional benefit is the backwards compatibility with ex­
tensibility, even when using ASCII characters. A user wish­
ing to retain normal ASCII collation sequences can simply
ignore options that specify a different character set or colla­
tion sequence.

On the other hand, if a user wishes to achieve "perfect" colla­
tion in ASCII, in which uppercase and lowercase letters blend
according to the generalized algorithm cited above, all that is
needed is a new ASCII collation algorithm.

In multilingual applications, the benefits are even more pro­
nounced. Users can identify default character sets and colla­
tion sequences, then enter data in those character sets to
achieve desired collation.

In cases where mixed strings involve several character sets
(such as directories with both western and Chinese names),

· multiple collation sets would be required, with a prescribed
sequence for displaying the character sets. For instance, in a
listing of patients in a hospital where both Western and Chi­
nese names are used, the default character set (say, Chinese)
would come first, and Western names would appear in proper
alphabetical sequence at the end of the list of Chinese names.
Thus two or more collating sets could be used with an appro­
priate default sequence specified.

April 1993

HL+ Applications in
Multilingual Environments
International epidemiological research and foreign language
translation are two fertile areas for HL+ multilingual
support.

An international group known as the Universal Medical
Information Service (UMIS) needs support for research in
patient records from many countries.[10] Machine-readable
dictionaries of medical terminology have been collected
linking epidemiological terminology in Chinese, Japanese,
German, French, and English to the International Classifi­
cation of Diseases. In a cooperative effort with UMIS, we
have shown that by cross-referencing diagnosis information
from different countries, the researchers should be able to
shed light on diseases with worldwide incidence.

If one investigates a series ofnational databanks on available
records on a specific disease or disease category, a natural
way of storing patient cross-index information in each data
set would be the following structure:

AJCDAF(icdai,"PTl")=<pointer to patient file data>
AJCDAF(icdai,"PT2")=<pointer to patient file data>
AJCDAF(icdai,"PT3")=<pointer to patient file data>

AJCDAC(icdai,"PTl ")= <pointer to patient file data>
AJCDAC(icdai,"PT2")=<pointer to patient file data>
AJCDAC(icdai,"PT3")=<pointer to patient file data>

etc.

where AJCDAF is a variable defined using ISO8859-1 col­
lated affording to French collation rules, and AJCDAC is
based on the Chinese character set GB2312-80, collated ac­
cording to Pinyin collation rules, etc.

In other words, for each ICDA code there would be a list of
all patients with a specific disease whose records were avail­
able in a given national database. Each patient number would
be separated by a delimiting character, and the patient num­
ber thus recorded would point to more detailed records de­
scribing the patient's disease, treatment, and outcome. A
short program using the utilities described above could be
written, requesting the name of each national database set,
then retrieving all patients from every national database
whose diagnoses matched the desired criteria.

The same process could also be performed in M using this
structure:

AJCDAF(icdai)="pptrl - pptr2- pptr3 ... "

M COMPUTING 71

where pptrl is a pointer to patient 1 data, and the concate­
nated string is manipulated using the $PIECE M function. Al­
though this design is natural and easily processed in M, it may
appear arcane to programmers in other high-level languages,
who could structure M files to better suit their programming
environments. In this way, they would be able to manipulate
an M database without having to learn all the details and tricks
of the syntax.

Machine-Aided Translations
Our second application is in the area of computer-aided natu­
ral-language translation (which some would call foreign lan­
guage translation). The concept ofusing translation worksta­
tions is new to researchers in the field of machine translation.
A translation workstation assists human translators by pro­
viding computerized resources such as dictionaries, gram­
mar-writing systems, or expert systems for domain-specific
text comprehension. [11)

The HL + concepts described here greatly facilitate machine­
aided translation. Display systems can show independent
windows, each with default natural-language character sets.
It will be possible to create domain-specific dictionary man­
agers and knowledge-based management systems. Utilities
can take advantage of the polymorphic nature of the HL+
system to write at a conceptual level that transcends a specific
natural language pair.

Language-independent internal storage is facilitated, so that
researchers can concern themselves with building morpho­
logic analyzers and grammar generators that need not be con­
cerned with the specific language pairs used nor the internal
storage or representation of each natural language database.

Using dictionary generation as an example, we could create
a Chinese-English dictionary in which the Chinese words are
collated according to their "Hanyu Pinyin" phonetic repre­
sentation. The details of internal storage are masked from
the programmer, who need only be concerned with Chinese
character codes and their English equivalents. The following
list illustrates a portion of the code required for this type of
system.

mnlcs("CEdic", "GB2312-80");
mcoll("CEdic", "Pinyin");
rmet("CEdic([G]f' j Gf')", "nonh");
rmet("CEdic([G]f' ~/')", "shon; low");
rmet("CEdic([G]f' Af")","human .beings; person");
etc.

Figure 3. Program sections for creating a Chinese-English
dictionary.

72 M COMPUTING

The identical dictionary definitions can generate a compara­
ble dictionary collated according to Cantonese pronunciation
by changing the second line to read

mcoll(Cedic2", "Tsang-Chi");

All other lines would remain unchanged, and yet a com­
pletely different dictionary would be generated for Chinese
readers who prefer the Cantonese dialect.

The details of internal storage are masked
from the programmer, who need only be
concerned with Chinese character codes

and their English equivalents.

We also have begun implementing a comparable collation
feature for handling Japanese characters. In Japanese, there
are two phonetic alphabets, katakana and hiragana. The for­
mer usually is reserved for a large number of borrowed words
(many from English), whereas the latter is used to provide
grammatic forms required in Japanese as well as spelling
words for which no "kanji" (Chinese characters used for
many Japanese words) are available. An additional complica­
tion is that, unlike a given Chinese dialect, a single Japanese
kanji character may be pronounced in more than one way,
depending on its word usage. Collation is therefore an unusu­
ally complex problem. To date, we have succeeded in defin­
ing the mixed-collation sequence used.in most Japanese dic­
tionaries today, and we have built an extensive dictionary of
Japanese words which ultimately will enable us to collate all
such words based on their correct pronunciation.

Extending this concept further, dictionaries for multilingual
systems could be created using a natural language-indepen­
dent internal representation, thereby allowing users to switch
source and targ~t languages, concentrating only on the con­
ceptual level of the problem rather than the technical details
of internal storage.

Easy Access to M
Database systems today face a challenge of meeting the needs
of non-first normal form real-world structures with formal
systems comparable to relational model constructs. Soon,
these challenges will grow to require increasingly widespread
manipulation of multiple character sets. Neither current data­
base packages nor high-level programming languages offer
either of these features.

Our research has shown that the complex structures of
MUMPS globals can operate independently of the M Ian-

April 1993

I

I
I

l

guage per se, and that this database can be accessed easily
from other high-level languages. The interpreter is not re­
quired in existing database systems or in high-level program­
ming languages.

This approach is a major shortcut for developing sophisti­
cated multilingual database features. M's functionality is im­
portant for international database applications and artificial
intelligence applications. It has proven to be invaluable for
applications wherein multilingual natural-language diction­
aries are involved, such as multilingual medical research ma­
chine-aided translation. [10,13,11]

C Users Take Note
Another benefit of HL+ is that it affords functionality now
missing in other high-level languages just when the function­
ality is desirable but means of embedding it in languages such
as C remain obscure. Consequently, it is possible that com­
puter scientists familiar with languages such as C would rely
on M globals to a.ccomplish tasks not readily achieved other­
wise. In turn, this might increase the visibility of Mand ulti­
mately enhance its acceptance.

To demonstrate the utility of this system, we have extended
our HL+ database system to include automatic collating op­
tions for mixed upper- and lowercase ASCII characters, Chi­
nese Pinyin (for all characters in the GB2312-80 standard),
and Japanese mixed katakana-hiragana based on JIS X0208
characters. We also retain the ability to collate on the pure
code value of character sets, so that there are currently six
different collation algorithms available. We are in the process
of implementing collation algorithms based on ISO 8859-1
for several Western European languages, notably French,
German, and Spanish. We also have immediate interests in
adding Tamil and Korean character sets, with a longer-range
goal of extending our efforts into other languages. Eventu­
ally, this system will work as a high-level tool in the natural
language processing environment based on our multilingual
workstation. [12, 13]

The research described in this report is the result of an interna­
tional team effort. Key members include G. Bradfield, E.
Clubb, E. de Moel, J. Diamond, J. Domingo, B. Douglass,
W. Giere, A. Puig, I. Wakai, and W. Yaksick. The research
has been partially supported by General Electric Corp.; the
Hok Yindong Foundation; MGlobal, Inc.; the MUMPS De­
velopment Laboratory (Nagoya, Japan); Sony Microsys­
tems, Inc.; Sun Microsystems, Inc.; the University of Cali­
fornia; and the U.S. Veterans Administration. Al

April 1993

la CyberToOls "' acl
M/MUMPS.

irtd~Q~ny.
"'0""'7'•:-·.·.- ··,·.:C""":::::::c::.

Build It Once
to Run Across

Any M Platform
Any Terminal or PC,

Any GUI.

Our smart design lets you work in X Windows
OSF/Motif and Microsoft Windows without
modifying your M code or giving up your

character-based terminals, for a truly long-term,
cost-effective windowing solution.

Proven, Over and Over.
Used by more major software houses

than any other M windowing tool.

Extensive productivity features free
programmers to concentrate on what
they do best - develop superb
applications. Toolbox VDE, optional
CUA, push buttons, radio buttons,
check boxes, menu bars, scroll bars,
pop-ups, hypertext, object-oriented,
color, mouse point & click.

CyberTools, Inc.
1501 Main Street, Suite 51
Tewksbury, MA 01876 U.S.A.
Inquiries: 508 858 3875
Fax: 508 858 0174

Al COMPUTING 73

Endnotes
1. M. Stonebraker, "Operating System Support for Database
Management," Communications of the ACM, 24:7 (1981),
412-418.

2. T. Andrews and C. Harris, "Combining Language and Da­
tabase Advances in Object-Oriented Development Environ­
ment," OOPSLA 87 Proceedings, 430-440; 1987.

3. M.P. Atkinson and O.P. Buneman, "Types and Persis­
tence in Database Programming Languages," !ACM Com­
puting Surveys, 19:2 (1987), 105-190.

4. S.R. Ladd, "Persistent Objects in Turbo Pascal," Dr.
Dobb' s Journal, 15:9 (1990), 36-40.

5. ISO/IEC/JTC1/SC22/N776: Japanese Member Body Con­
tribution on Character Handling Requirements in Program­
ming Languages, (working paper for review by ISO SC22
Member bodies), 1990.

6. J. Melton, "Further Character Set Issues (Resolved),"
ANSI X3H2-89-376rev2, Dec. 12, 1989.

7. Z.M. Ozsoyoglu and L.-Y.Yuan, "A New Normal Form
for Nested Relations," ACM Transactions on Database Sys­
tems, 12: 1 (1987), 111-136.

8. J. Domingo, G. Gradfield, C. Zhang, andR. Walters, "A
Conceptual Model for MUMPS Systems," MUG Quarterly,
21:2:21-6.

9. J. W. Van Wingen, "Sort Order Schemes in Different Lan­
guages," ISO/IEC/JTC l/SC2 N2111, 1990.

10. D. Walker, "UMIS-Universal Medical Information
Service-History and Progress," Proceedings, Medinfo '89
Conference, Beijing and Singapore (1989), 790-794.

11. L-C. Tong, "The Engineering of a Translator Worksta­
tion," Computers and Translation, 2, (1987), 263-273.

12. R.F. Walters, "Design of a Bitmapped Multilingual
Workstation," IEEE Computer, 23:2 (1990), 33-41.

13. R.F. Walters and C. Zhang, "Support of Multilingual
Medical Research," Artificial Intelligence in Medicine, 3
(1991), 131-138.

The authors are from the Division of Computer Science, University of
California at Davis. Richard F. Walters, Ph.D., is the executive editor
of M Computing.

74 Al COMPUTING

Q: How can I write portable MUMPS?

A: Make sure your code adheres to the
ANSI/MDC X11.1-1990 standard. The best
reference is available from MTA-
The 1990 ANSI MUMPS
Language Standard.
You'll find complete
specifications for
writing code,
including:

• Variable Scoping

• Parameter Passing

• Extrinsic Functions.

See page 57 for this and other MTA
publications.

April 1993

