
INTERFACING M

Orchestrating Reinote and
Local Databases

lJy August M. Turano

Introduction
Database technology represents a key software methodology
that drives data acquisition and retrieval in the information
age. Databases exist on virtually all types of hardware and
software environments, from the smallest personal computer
(PC) to the largest mainframes. Until recently, databases
have been separate and distinct units that might, but usually
did not have to, interact with front-end application programs.
Although distributed database software is still not a popular
technology, activity in this area is growing.

This article demonstrates a set of prototype applications in
which local PC databases are used by GUI (graphical user
interface) front-end programs, working in concert with local
X-base databases and a large distributed M database on a re­
mote machine, to perform various tasks. Sophisticated mod­
ern interfaces that can be designed by screen-oriented click­
and-drag windows programs are particularly appealing to
systems analysts and designers who must reengineer older
applications or create new applications to compete against
contemporary windows-oriented interfaces.

Modern Interfaces
The traditional roll-and-scroll interfaces are a thing of the
past. Users now demand windows with color, pop-up menus,
and variable screen-control elements. These elements must
react appropriately to many different forms of screen input.
Graphical systems, such as X Window and Motif, have been
used but often require special terminals and can be very com­
puter-intensive. [I] The PC-based Microsoft Windows is ex­
tremely popular: many users enjoy its consistent user inter­
face display in various environments.[2] The cost of PC
MIPS (million instructions per second) is roughly one-tenth
that of mainframe MIPS. Therefore, if PCs can validate, cap­
ture screen data, and obey screen-oriented user directives, it
makes sense to use them rather than place the load on the
mainframe. Great cost savings can be realized by employing
cooperative processing using both PCs and larger machines

60 M COMPUTING

connected by networks. The relatively low cost of PC hard­
ware and most related software encourages experimentation
and development. Operating systems, application interfaces,
programming languages, statistical packages, graphics pack­
ages, etc., cost hundreds of dollars for the PC, while the same
functionality on a mini or mainframe computer may run into
thousands or tens of thousands of dollars.

Event-driven computing has now become the de facto stan­
dard for most commercial applications. This programming
paradigm is not difficult to learn, it just takes a while to adjust
to it. Traditional programming usually begins with declara­
tions, then proceeds to input, computation, and finally out­
put. This activity usually is performed from the top down. In
the event-driven environment, the user drives the application
by clicking on a screen control element. The user decides the
program path, and the application designer merely enforces
the rules that govern the activity taken. A control item might
be a command button (FILE/QUIT), a text box, a radio button
(buttons that are mutually exclusive, such as "sex: male or
female"), or a list box. Potential activities depend on the type
of control: each control object has specffic properties associ­
ated with it. The programming environment should limit
what operations can be performed on each. The old bottom­
of-screen line with a warning and/or error message is gone.

Creating user-friendly software for a front-end application,
such as a data-entry transaction, can reduce employee turn­
over, since a better user interface for critical applications is
important in the overall business application. Again, the rea­
sonable cost of the software and hardware makes tools and
experimentation in this computing area both exciting and
worthwhile.

Combining a Remote M Database
with Local PC X-Base Technology
Using what is defined more traditionally as client/server com­
puting, the PC and a remote network or large mainframe can
work together. Think of the PC as the front-end client re­
sponding to the user and sending requests for information to
the remote database server. Validating input and responding
to mouse clicks or commands when the transaction is ready to
be filed is a local (PC) function. Forwarding the accumulated

April 1993

l
l
I

I
I
i
I
I

1
I
j
1
t
i
i
l

information to the host machine or network to store the data
in a separate repository is highly desirable and more secure.
The remote database system can be connected via Ethernet
or even serial lines depending on the speed and the amount
of communication needed between the PC client and the host
server.

... a central data repository makes
more sense and builds confidence in

the app Ii cation system.

In the popular vernacular, the operating environment be­
tween the PC and the host is utilizing Dynamic Data Ex­
change (DDE). "DDE is an open, language-independent,
message based protocol that lets applications exchange data
or commands in any mutually agreed on format. The basic
concept is that of conversation between client and server,
with the client being the initiator".[3] It is the message, not
the medium, tliat is important in moving data between inde­
pendent computer systems.

The client software performs a variety of tasks, such as forms
presentation, data acquisition, and validation. Data captured
by the presentation layer can also be used for data manipula­
tion, queries, etc. Using the local PC for validation and pro­
gram execution minimizes the need for excessive data re­
quests on a network: data are requested only as needed.
Searches and sorts can be executed locally, even if the data
must be retrieved from the host server. Report generators and
statistical and graphical packages can produce output either
directly from the database or indirectly from secondary files
that might have-been created from a search or sort function.

The PC, generally operated by a single user, offers very little
data security; message protocols and passwords are necessary
to implement proper user access to shared data. System main­
tenance is also difficult. If data are stored on various PC data­
bases it is difficult to ensure proper backups or maintain an
intact local database file structure or routine database mainte­
nance. At best, it is extremely difficult to manage important
data in this manner, so a central data repository makes more
sense and builds confidence in the application system. This
data repository is the remote database server.

The database server handles data storage and backups, pro­
vides access and security mechanisms, and produces data via
database "seeks and gets," using the correct respective in­
dexes to those data. The functions of the front-end client and
the database server can be summarized as shown in figure
l.[4]

April 1993

GUI Front End

• Forms presentation
• Data capture
• Data validation
• Application logic
• Report tools
• Menus
• Data manipulation

Database Back End­
The Database Server

• Security/access
• Backups
• Archival activities
• Indexes
• Data retrieval
• Data storage

Figure 1. Front-end/Database-server functions.

In coupling the PC programs with the remote database, dis­
play speed and data accuracy are critical. Sufficient speed
requires minimal delay in an application when either local or
remote lookups are in process. Fast disks for data inquiries
are essential in either case. Because access time using the
network data usually takes longer than a local database query,
local databases should be used as much as possible.

Ease of Learning with X-Base
Database and dBase
When trying new technology, using resources with a low
learning curve works best. The X-Base database standard for
local database construction is a common and very familiar
format taught in almost every introductory database course.
X-Base is extremely popular and powerful, in light of the
abundant third-party software utilities and libraries available
for just about any kind of data manipulation. X-Base provides
several basic data types, including:

• CHARACTER - alphanumeric text;

• MEMO - longer text files;

• DATE - a valid date field;

• NUMERIC - numbers where width and decimal places are
specified; and

• LOGICAL - yes or no.

In dBase, data are stored in files composed of individual data
fields. A programmer selects a file with the appropriate in­
dex, then queries the file to access any of the data. The dBase
program code accesses individual fields much like a global
reference with data in various piece positions, so that each
element can be manipulated.

Ill COMPUTING 61

In X-Base form, quick database lookups can be performed
using indexed files, where B-tree type file construction pro­
vides fast access to specific data. Fields can be combined to
form combination indexes (client number+ patient ID) when
the need for more involved lookups is a factor. Clipper and
dBase are easy-to-learn programming languages for ac­
cessing any database file created in that environment.[5,6]
The advantage of using a product like Clipper is that it is a
complete but portable system; the end user does not have to
own Clipper. Clipper produces executable files that are C­
extensible (can call C routines directly) and can be distributed
royalty-free. A large site with many PCs can use the applica­
tion software for just the development cost; no additional roy­
alty payments or licensing are needed.

M Database Technology Combined
with Clipper
Clipper and/or dBase can provide a good database environ­
ment, but for reasons discussed earlier, database administra­
tion and system functions are difficult to manage. Combining
both local and remote databases to be used at will is optimal:
this minimizes data traffic on the network and offers the ad­
vantages of the PC programming environment combined
with the security and datsihase administration associated with
a larger remote dat,:ibase .. An application designer knows
which files ar~static (such as religion, race, states), and these
files can be kept locally on the PC. Large pools of information
such as patient names, IDs, daily transactions, prescriptions,
and bank account transactions are kept remotely. This design
generated the first prototype applications involving patient
queries and a patient-registration filing application.

This design generated the first prototype
applications involving patient queries and
a patient-registration filing application.

Clipper was used to design several local databases, yet the
PC has access to all patient data stored on the remote M data­
base. The remote database in our clinical environment con­
sists of six gigabytes of data distributed on four 486/33 ma­
chines running MSM-MUMPS 3.0.12.[7] The patient­
registration application necessitated the creation of several
Clipper utility programs to allow re-creation of SET $PIECE
and normal $PIECE extraction functions. We wrote a set of
library routines to allow Clipper application code to make
direct M calls in a noncryptic and straightforward way. This
library works by preparing data and acquiring results via
Clipper in a function called MCMD, whose syntax is simply

62 M COMPUTING

MCMD ("MUMPS command here"). Digital Equipment
Corporation has a DOS product, DSM DDP DOS, for ac­
cessing DSM-DDP protocol. [8] This terminate-and-stay-res­
ident (TSR) product provides access using Ethernet directly
from the DOS environment. A resident TSR assembles and
disassembles packets for the Ethernet network. Each M com­
mand has a specific format that must be constructed before
the interrupt call activating the TSR can be made. This syn­
tax, while effective, was tedious to code in application soft­
ware. We developed a clean way to allow an M programmer
access to this functionality with a familiar M syntax. Support
for SET' KILL, LOCK, $ORDER, $GET' $QUERY' volume-set selec­
tion, and network open and close utilities provided by the
TSR were adapted to a more conventional syntax. In this
way, Clipper and M syntaxes worked together to design the
application.

Clipper to M Interface
The following example illustrates how the Clipper code per­
forms an M function such as $DATA. (Calls to the Grumpfish
library add sparkle to this application with special screen
techniques and color.)[9] Using Clipper code to obtain $DA­
TA(APA(value)) from the M database, build the full Mrefer­
ence as a string and pass it on to M:

GLOBREF:="/\PA("+CHR(34)+value+CHR(34)+")"
CMDSTR:="$D("+GLOBREF+")"
RES:=MCMD(CMDSTR)

The result, RES, contains the value refiirned by $DATA. Note
that in Clipper, the"+" is the concatenation operator when
operating on strings. The actual performance of the system
delivers in excess of 125 database reads per second (approxi­
mately .008 seconds perread). These numbers are, of course,
dependent on the user load, network traffic, speed of the
disks, and the CPU.

M, Visual Basic, and Clipper
Clipper, although extremely powerful and easy to use, still
falls short in mouse support and ease in overall GUI creation.]·
Searching for a better way to create friendly and attractive
user interfaces, we turned to Visual Basic, which has been
getting rave reviews for its DOS and Windows versions. Vi- J
sual Basic allows a form to be created by pointing and drop-
ping items onto the window. All items on the form are given
a control name and associated with specific properties. For
example, a text box can have width, border style, color de­
scriptions for foreground and background, a tab stop number,
activity for when the control is activated or deactivated, and
more. Controls can be grouped together or created sepa­
rately. There is a complete development environment with

April 1993

menu construction, mouse support, and ease of coupling the
form with specific program code. The language is easy to
learn and use; it is BASIC with much greater power and con­
trol than ever before. The Professional Edition includes li­
braries for doing a variety of functions. [10]

Visual Basic puts the fun back into programming. Programs
can be created for either the Windows or DOS environment,
so that a nice-looking, colorful interface can be ~esigned for
any appropriate platform. The event-driven programming
paradigm is a little hard at first, but after a day or two, a user
can be fairly comfortable. Easily drawing the interface that
the user wants is what GUI design is all about, and Visual
Basic provides that. Timers can be set, graphics can be used,
complete input/output (I/0) capabilities are available, and
EXE files are the final output.

Giving applications a face lift benefits
users a.nd system designers alike.

The biggest drawback to Visual Basic is the ISAM (indexed
sequential access method) file structure. It is awkward, not
an industry standard, and is limited to 128 megabytes per file.
For this reason, we chose a hybrid of Visual Basic coupled
with Clipper Database file structure as the development path.
A third-party vendor, Sequiter Software, has a set of library
routines that allowed access to all dBase functions, such as
"seek," "goto record," and "get field data."[11] This soft­
ware made it possible to combine Visual Basie's program­
ming ease with the standard dBase format and plethora of
access tools and report generators available to the dBase pro­
grammer. VisualBasic now is used just as Clipper was in the
initial experiments to develop PC client applications. These
applications employ the same remote access TSR software
that was used in the first Clipper applications. The only
changes necessary were internal to the library routines to han­
dle details concerning mixed language memory allocation
and string-passing inconsistencies.

Conclusion
Redesigning the user interfaces of currently operating appli­
cation code is a common and very important task. Giving
applications a face lift benefits users and system designers
alike. If this task is performed correctly, cooperative-pro­
cessing techniques can save precious mainframe or host data­
base CPU cycles and improve overall system performance.
Using the PC to perform basic I/0 and validation can signifi­
cantly reduce the host processor's load. Easy-to-learn and
powerful PC languages such as Clipper (X-Base) and Visual

April 1993

Basic make the reengineering of many applications exciting.
Access to royalty-free third-party libraries permits consis­
tency and solid software construction, affording both modu­
larity and reusability of code. Redesigning the user interface
is always worthwhile, particularly for older applications.
After all, the user thinks the interface is the program.

Following is a short sample of Clipper access ofM database.
For a more complete understanding of the Clipper access of
M database, please see the upcoming June 1993 issue of M
Computing, which will carry a full appendix following a sim­
ilar article by this author. M

Endnotes
1. "X Window," ANSI Technical Committee X3H3.6, and
"X Window Binding," MDC Document No. XI l/SCI l/92-
10.

2. Microsoft Windows 3.1, Microsoft Corporation, 1990-
1992.

3. K. Kornfeld and K. Gilhooly, "OOPS via DDE," Byte,
(June 1992) 145-154.

4. T. Duesher, "Selling the Database Server," Reseller Man­
agement, July 1991, 54-61.

5. Clipper - CA & Associates, Nantucket Corporation, 1984-
1990.

6. dBase IV - Ashton-Tate, A Borland Company, Borland
International, Inc., 1988-1992.

7. Micronetics MUMPS, Micronetics Design Corporation,
1992.

8. DSM-DP-DOS, Software product, post #'s. BI-PB8XA­
BK and BI-PBDAA-BK.

9. G. Lief, GrumpfishLibrary, Grumpfish,Inc., 1988-1991.

10. Microsoft Visual Basic Professional Edition, Program­
ming System for MS-DOS, Microsoft Corporation, 1992.

11. CodeBASIC, Database Management, Sequiter Software,
Inc., 1988-1992.

Ye Yi Wang created vital parts of the interface library.

Dr. Turano graduated from the University of Pittsburgh in 1982 with a
Ph.D. in physics. Introduced to M in 1981, he has been developing
systems utilizing M in various PC languages ever since. He is director
of information and communication systems at Med-Chek, a Damon
Laboratory, 4900 Perry Highway, Pittsburgh, PA 15229; telephone
412-931-1281.

M COMPUTING 63

APPENDIX
Clipper Access of M Database

/* acn.prg program to that uses DEC-DDPDOS and CA-CLIPPER
access a remote MUMPS database for lookups
as well as data deposits*/

/* Copyright 1993 A. Turano, Ph.D. */
//Necessary initialization
//The following are modules that are contained in CDDP.LIB

EXTERNAL MCMD
EXTERNAL OPENDDP
EXTERNAL CLOSEDDP
UCI="LAB"
VOL="LPB"
RES := II II

ACN := II II

LOOP:= 500

//Set screen up
SAVE DRAPE("temp.scr")
SET COLOR TO "W+/B,W/R"
SET DECIMALS TO 4
SET SCOREBOARD OFF
CLEAR SCREEN
//call grumpfish exploding box function
msg="Med Chek Labs - A Damon Laboratory"
CLRSCR(5) 'fancy screen wipe
@23,30 SAY "Hit a key to continue "
FALLGUY(20,23,msg,100)
RAINBOW(msg)

//Open Channel to MUMPS system
CLRSCR(8)

to do

//select user access account
//select volume set to access
//Set RES (result) to character,
//(accession number of specimen) to character
//how many times do you want to go thru the loop
//accessing remote data

//fancy save for DOS screen - restore on exit
//set some screen color parameters
//set number of decimals for computations
//don't show the bottom screen activity monitor

//grumpfish library calls
//grumpfish library calls

ExpBox(l,1,22,76,1,20,"W+/BG+","Accessing MUMPS through Clipper")
SET COLOR TO "W+/BG+"
OK:= OPENDDP(UCI,VOL)
IF OK= -1

IMPBOX(20)
CLS
@ 5,5 SAY "Bad UCI or VOLUME name!"
RETURN

ELSEIF OK= -2
IMPBOX(20)
CLS
@ 5,5 SAY "DDP unable to start .. "
RETURN

ENDIF
//Get ACN from user

//open the DDP channel

//make an imploding box

@ 2,5 SAY "Enter starting accession number:" GET ACN PICTURE "!9999999"
READ
setcolor("B/BG+")
@ 2,5 say "MUMPS $0 through Patient File, "+str(LOOP)+"Records"
setcolor("W+/BG+")

//Build MUMPS command
GLOBREF : = '"'PA("+CHR(34) +ACN+CHR(34)+")"
CMDSTR := "$D("+GLOBREF+")"

//Look at the MUMPS system and see it that ACN exists
RES= MCMD(CMDSTR)
qout("res=",RES)

//construct the global reference
//make the command string to be performed

//execute a MUMPS command-remote $D
//this is the result

res:= VAL(res) //everything from MUMPs is character MAKE numeric
IF res= 0

IMPBOX(20)
CLS
@ 5,5 SAY "Accession number not found!"

ELSEIF res=lO
IMPBOX(20)
CLS

//grumpfish function

@5,5 SAY "Accession number not defined but has descendents."
ELSEIF res=l

IMPBOX(20)
CLS
@5,5 SAY "Accession number found and has NO descendents."

ELSEIF res=ll
IMPBOX(20)
CLS
@5,5 SAY "Accessioi;i number found with descendents."

64 Al COMPUTING April 1993

ENDIF
? "Press any key to continue ... "
INKEY(O)

//Found the accession#, so get the info
CMDSTR := "$G("+GLOBREF+")"
RES= MCMD(CMDSTR)

//wait for user to continue

//construct another command string
//go visit MUMPS

TARRAY := <>

DATA:= EXPIECE(RES,""",19,TARRAY)

//TARRAY is an array to hold the pieces of data
//dynamic array allocation-just like MUMPS!
//Extract the 19th piece of RES
//TARRAY is just in case you want more.

//Display that patient's name+sex+age
@ 3,5 CLEAR TO 21,75
rollup(padr(TARRAY[l4],35)+padr(TARRAY[l6],10)+TARRAY[l7])

//Display next LOOP patient names and time it
STARTTIME := TIME()
FOR I=l TO LOOP-1 //00 SOME $0 FUNCTIONS

//Get the next ACN # - Perform the $0 function
CMDSTR="$0("+GLOBREF+")"
RES= MCMD(CMDSTR) //go visit MUMPS
//Get data for that ACN#
GLOBREF=""PA("+CHR(34)+RES+CHR(34)+")" //global reference
CMDSTR := "$G("+GLOBREF+")"
RES= MCMD(CMDSTR) //go visit MUMPS
//Pick out the patient's name
TARRAY := <>
DATA= EXPIECE(RES,""",19,TARRAY)
//Write out PIECES 14=Name+PIECE 16=Sex+PIECE 17=00B
rollup(padr(TARRAY[l4],35)+padr(TARRAY[l6],10)+TARRAY[l7])

NEXT
ENDTIME : = TIME ()

//Show the results and times
@ 2,5 CLEAFf'\TO 21,75
@ 4,5 say "Starting Time: "+ STARTTIME
@ 5,5 say "Ending Time: "+ ENDTIME
SECS:= ComputeTime(STARTTIME, ENDTIME)
@ 7,5 say "Seconds per read, piece, and display: "+ STR(SECS/LOOP)
@ 8,5 SAY"# Reads, pieces, displays per second: "+ STR(LOOP/SECS)
@ 17,5 SAY "Press a key to CONTINUE ... "
INKEY(O)

//Display that patient's name
clrscr(2)
setcolor("B/BG+")
@ 2,5 SAY "MUMPS $Q through Patient File, "+str(LOOP)+"Records"
setcolor("W+/BG+")

//Display next LOOP patient names and time it
STARTTIME := TIME()
FOR I=l TO LOOP //00 SOME $0 FUNCTIONS

//Get the next ACN #
CMDSTR="$Q("+GLOBREF+")"
RES = MCMD(CMDSTR) //go visit MUMPS
//Get data for that ACN #
GLOBREF:=RES
CMDSTR :,;; "$Q("+GLOBREF+")"
RES= MCMD(CMDSTR) //go visit MUMPS
rollup(globref+"=")
cmdstr="$G("+globref+")"
RES= MCMD(cmdstr)
rollup(res)

NEXT
ENDTIME : = TIME ()
//Show the results
@ 2,5 CLEAR TO 21,75
@ 4,5 say "Starting Time: "+ STARTTIME
@ 5,5 say "Ending Time: "+ ENDTIME
SECS:= ComputeTime(STARTTIME, ENDTIME)
@ 7,5 say "Seconds per read, piece, and display: "+ STR(SECS/LOOP)
@ 8,5 SAY"# Reads, pieces, displays per second: "+ STR(LOOP/SECS)
@ 17,5 SAY "Press a key to exit ... "
INKEY(O)

//Measure only READ time
@ 2,5 clear to 21,75
setcolor("B/BG+")
@ 7,5 SAY "Measure of RAW SPEED doing "+str(LOOP)+" $Qs:"
setcolor("W+/BG+")
SET CURSOR OFF
STARTTIME := TIME()
FOR I=l TO LOOP // DO SOME $0 FUNCTIONS

CMDSTR="$Q("+GLOBREF+")"
RES= MCMD(CMDSTR)
GLOBREF:=RES
CMDSTR := "$G("+GLOBREF+")"
RES= MCMD(CMDSTR)

April 1993 M COMPUTING 65

NEXT
ENDTIME := TIME()
SET CURSOR ON
SECS := ComputeTime(STARTTIME, ENDTIME)
@ 9,5 SAY "Seconds per READ: "+ STR(SECS/LOOP)
@ 10,5 SAY "READS per second: "+ STR(LOOP/SECS)

//Close up
@ 15, 5 SAY "Press a key to exit. . . "
INKEY(O)
ImpBox(20)
PULL_DRAPE("TEMP.SCR",30)

//Close up the on-screen box
//GRUMPFISH FUNCTION RETURN

II **~****
//Mimic the $Piece function with some extras

FUNCTION EXPIECE(mstring,delim,n,narray)
local xstr,i && xstr=is working string, i=loop counter

IF N>256

&& n is the piece you want, narray =logical return
&& entire array of pieces

return"• Error piece number too large*"
ENDIF
xstr=mstring+delim
FOR i=l TON

pos=AT(delim,xstr) && postion of delimiter
IF pos=O
EXIT && exit the loop
ENDIF
pie=SUBSTR(xstr,l,pos-1)
IF narray!=NIL
AADD(narray,pie) && Build an array of pieces
ENDIF
IF i=n
return pie
ENDIF
xstr=SUBSTR(xstr,pos+l,len(xstr)-pos)

NEXT
RETURN NIL && not found

/**/
//Mimic the set $Piece function

FUNCTION SETPIECE(mstring,delim,N,mvalue)
&& RELEASE parray && clean up the array before starting ...
IF N>256
return"• Error piece number too large*"
ENDIF
xstr=mstring+delim
i=O && counts the number of delimiters
DO WHILE AT(delim,xstr)>O

i=i+l
pos=AT(delim,xstr) && postion of delimiter
pie=SUBSTR(xstr,l,pos-1)
AADD (par ray, pie) && Build an array of piece·s
xstr=SUBSTR(xstr,pos+l,len(xstr)-pos) && shorten string by 1 delim

ENDDO
IF i<n && This code will add null elements to the needed depth

FOR J=l TO N-i
AADD(parray,"")
NEXT

ENDIF && delimiter
parray[N]=mvalue &&set the appropriate element
mystring=""
FOR I=l TO LEN(PARRAY) && construct the changed delimited string
mystring=mystring+parray[i]+delim
NEXT
mystring=SUBSTR(mystring,l,LEN(mystring)-1)

RETURN mystring
function ComputeTime(STARTTIME, ENDTIME)
local MINS, SECS

MINS:= VAL(SUBSTR(ENDTIME, 4, 2)) - VAL(SUBSTR(STARTTIME, 4,2))
SECS := VAL(SUBSTR(ENDTIME, 7, 2)) - VAL(SUBSTR(STARTTIME, 7,2))
IF SECS< 0
SECS:= 60 + SECS
ENDIF
return(SECS+60.MINS)

I• **********************FUNCTION rollup ******************* •/
STATIC FUNCTION rollup(mtxt)

SCROLL(2,5,20,70,l) // TOP LEFT, BOTTOM RIGHT,# OF LINES TO SCROLL
@20,5 SAY mtxt
RETURN NIL

For a more complete understanding of the Clipper access of M database, please see the upcoming June 1993 issue of M Computing.

66 JI COMPUTING April 1993

j
I
l
I
I
I
i
I
J
t
I
t

l
I
I

I
I

	p60
	p61

