
INTERFACING M 

Connecting with the Outside World 

by Russell White, IV 

An Interim Document, Nothing 
Is Final 
The need for external-data and routine interchange has long 
been recognized in segments of the M community. [ 1,2] In 
1989, Peter Krizmak suggested possible interfaces between 
Mand the external world. The new MDC (MUMPS Develop­
ment Committee) standard enables M programmers to call 
to non-M routines using a standard-calling syntax.[3] This 
syntax replaces the nonstandard $ZCALL mechanisms that 
many vendors use. The syntax uses an introducing character 
[&], a package name, a period, and the actual routine name, 
followed by any parameters, for example: 

S DISPLAY=$&XLIB.XOpenDisplay("M Window") 
D &XLIB.XStoreName("Mwindow") 

External-data typing is not addressed in the standard. In M, 
there are a large number of implicit data types. [4] In non-M 
environments, data types are usually explicit. Even when the 
data typing is explicit, there are complex issues surrounding 
an interface between any two languages or environments. A 
number of existing calling standards work with multiple lan­
guages (e.g., VAX Calling Standard, 1978 to date, and Digi­
tal Equipment Corporation), but these are environment- and 
vendor-specific. Several American National Standards Insti­
tute (ANSI) and International Organization for Standardiza­
tion (ISO) groups are working on many related topics. One 
group produced an interim document for Common Language­
Independent Data Typing (ISO/IEC/JTC l/SC22/WG 11/ 
N319R). The specification is large, complex, and cumber­
some. Many people have worked years in this field, and a 
final standard has yet to emerge. Issues encountered while 
developing the X Window binding provide a snapshot of these 
problems. 

Three Interfaces 
Three types of interface are possible between two languages 
or environments. The first is a byte- or bit-stream mecha­
nism. This works well for platform-independent network 
protocols, and is used for both Open M Interconnect (OMI) 
and X. This type of interface is typically at a lower level than 
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is optimal for application development. Applications on both 
sides of the byte stream must encode and decode. Perfor­
mance is not necessarily a feature of these implementations. 
Portability frequently is a feature, although some byte-stream 
protocols have failed this as well. To enhance performance, 
implementations of some protocol-level interfaces include 
standardized libraries. In either case, both sides of the inter­
face must use compatible interfaces. Examples of standardiz­
ing remote procedure calls (RPCs) suggest that this is not 
uniformly accomplished easily. 

The second type of data interchange is that of explicit data 
typing and conversion. Some of this methodology was used 
with the X binding. This was only feasible because the X 
environment is defined in explicit and extensive detail. De­
tailed mapping of data structures between environments has 
some negative aspects. The syntax to specify the access can 
become cumbersome, and may be nonintuitive to some users. 
While declaring the data translation is feasible in many cases, 
it also implicitly may impose additional data-typing require­
ments. This can be a useful feature between two environ­
ments wherein there is explicit typing. When the two envi­
ronments are more disparate, this can impose burdensome 
restrictions. "'-' 

Data-type mapping requires three pieces of knowledge. First 
is the data types supported by the calling language. Second 
is the data types supported by the called language. Third is 
data-fit algorithms, best-fit algorithms, and rules for excep­
tions to the direct mappings. An alternative to this methodol­
ogy is an intermediate definition language (IDL) and lan­
guages that support the first two pieces to interface to the 
IDL. Now there are no standard IDL/language interfaces, and 
at least three standard IDLs exist. Some form of an IDL also 
may be useful in the third method of data interchange. 

The third method of data interchange is that of routine-level 
interface. This is probably the highest-level interface practi­
cal between environments. This level allows the calling of 
routines between environments using defined interfaces. The 
X binding also made use of this methodology. It is also avail­
able in various forms on today's M implementations. RPC 
forms are based upon this concept, although to date no plat­
form- and environment-independent RPC exists. Many pos­
sible uses of technology may be developed at this level. One 
is the interchangeable use of routines or environments. 
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What Constitutes a Routine? 
Lack of standardization in the definition of what constitutes 
a routine call also presents a problem. ANSI Xl 1.1 defines a 
routine. ANSI X3.159-1989, the C language standard, has 
another definition. Similarly, FORTRAN, COBOL, and 
other languages each use different calling and parameter 
mechanisms. In many cases, these are defined in a language­
specific manner, and no provision is made for any standard­
ized mechanism outside that environment. Thus, a mapping 
for calling and interchange of routines is needed. 

Looking solely at RPC does not work. Many current RPC 
implementations are in fact C-based, and presume C calling 
conventions that are not available on all platforms. There­
fore, methods of routine interchange and definition are still 
mostly platform dependent. Standards work is underway to 
define standard interfaces, within both the Institute of Electri­
cal and Electronic Engineers (IEEE) (P1003) and ANSI 
(X3T2). 

"'I. 
The X Window binding for M used techniques of two forms 
of data interchange. Each has its uses, although for general 
applications-level programming, routine interface seems to 
be preferred to direct data interchange. Advantages include 
higher performance and greater flexibility at the applications 
level. The callback mechanism employed within the binding 
is a good example of a simple routine interface. The 
XMUMPS. Set Value call is a good example of direct data inter­
change. The latter does not work well if the external environ­
ment is generalized. The techniques can certainly be used, 
but a well-specified external definition is required. 

Reasons for each method vary. The X Window binding has 
a standard interface fo routines typically written in C. Inter­
change at the routine level allowed simple access to the rou­
tines available on platforms supporting X Windows and Mo­
tif. These routines are widely documented and texts on them 
abound. This worked well for routine-level interchange, but 
data types within X are those of C, and there are many im­
plicit assumptions regarding sizing and structure. Special­
purpose routines with the binding to bridge data issues be­
tween the two environments now exist. These few routines 
manipulate the direct data interchange that sometimes be­
comes necessary. Looking at how various languages inter­
face to X and to other environments provides some interesting 
insights to the entire problem. 

The Bridges to X 
C and most other rigidly typed languages use fixed (machine­
dependent) sizes for atomic data types. The bit sizes of the 
atoms may vary across platforms, but the relative sizes and 
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names are constant. Users are warned about making assump­
tions about size, however. C also includes the nondeterminis­
tic zero-terminated character string and composite data types. 
Composite data types include arrays, structures, and unions. 
C arrays include a single atomic element, have specified di­
mensions, and are both rigid and densely packed in their 
structures. M, by comparison, uses sparse arrays of any data 
type. In C, structures also can define data aggregates com­
prised of subelements that are either atomic data elements or 
composite data types, which eventually can be decomposed 
to atomic data types. Mapping between these environments 
raises a number of challenges for implementors. Differences 
in the scope of life of data within various environments are 
yet another challenge. 

With the X binding as an example again, using the highest­
level interface ( usually the level of the routine) greatly sim­
plifies programming at the applications level, if data typing 
is assumed to be implicit or externally defined. This method 
works for interchange with environments where no explicit 
structure must be applied to data formats. For those formats 
where data interchange is needed, transformation at routine 
invocation time, if feasible, is useful. The issue of where data 
reside, given two environments, is problematic. Keeping the 
data on one side only can lead to serious performance prob­
lems or programming difficulties. Flexible high-level inter­
faces solving these issues are highly desirable. 

The physical structure of atomic types presents problems for 
languages using rigid typing. Other issues are less apparent, 
but more problematic. Many languages use either ad hoc call­
ing structures or language-specific structures. Lack of stan­
dardization wreaks havoc in a multilingual programming en­
vironment. VAX users have long taken for granted the calling 
standard that VMS-layered products use. Within the personal 
computing market, it is different. There have been cases 
where one vendor's C compiler uses a different calling struc­
ture than that of another vendor. If one uses a library com­
piled by one vendor's compiler, the lack of a standard calling 
mechanism can prevent using another vendor's compiler with 
that library. 

Avoiding Other Languages' Pitfalls 
These issues are greater than that of a single language or envi­
ronment. While data approximations that work across plat­
forms are feasible, there may be environments where they do 
not work. Standardizing the physical format of data does not 
ensure that complete interoperability will occur automati­
cally. M has avoided these pitfalls in the past by taking a 
higher-level view. The concept of an IDL is useful, but care 
must be taken to avoid a yet larger set of problems. 
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Providing data representation as a part of external routine in­
terface appears to give the best hope for interoperability with 
the rest of the computing world. Implementations of the ID Ls 
exist on some M external-call implementations today. They 
deal with interoperability on the platform or platforms for 
which the implementation was designed. Typically, these are 
implementations and methods that are generally applicable. 
This method places the data-interface definitions with the 
routine-access definitions. The implementation of these 
ID Ls across multiple platforms has proven this to be one valid 
methodology. 

Defining absolute mechanisms or atomic hardware types may 
lead to the same pitfalls encountered with other languages. 
As anyone who has ported compiled code between 16-bit, 
32-bit, and 64-bit processors or interfaces can attest, pro­
grammatic or data size assumptions are often overlooked, 
and cause enormous platform portability issues. Combining 
relative sizing and characteristic specific typing (numeric, 
alpha character, Bq_olean, etc.) is probably the best solution, 
being simple yet flexible. This approach can be taken consis­
tently with the proposed 1993 ANSI Xl 1.1 specification. 

Providing data representation as a part of 
external routine interface appears to give 
the best hope for interoperability with the 

rest of the computing world. 

Creating standard interfaces at levels where solutions are ei­
ther infeasible or unusable on various platforms seems fruit­
less. Specifying exact physical data element sizes, explicitly 
or implicitly, is not useful either. No matter what size is cho­
sen, some platform exists for which these are invalid, use­
less, or possibly unimplementable. Using the highest-feasi­
ble level of abstraction lends to programmers the strengths of 
M coupled with access to the external world. Any IDL nota­
tion adopted must be readily understandable and map directly 
to M data constructs. A notation so abstract and complex that 
the meaning and mapping are not readily recognizable by 
both M programmers and external programmers serves little 
purpose. To date, M has been remarkably free, by design, of 
these issues. Whatever solution emerges, it needs to prolong 
this trend. M 
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