
INTERFACING M

Connecting with the Outside World

by Russell White, IV

An Interim Document, Nothing
Is Final
The need for external-data and routine interchange has long
been recognized in segments of the M community. [1,2] In
1989, Peter Krizmak suggested possible interfaces between
Mand the external world. The new MDC (MUMPS Develop­
ment Committee) standard enables M programmers to call
to non-M routines using a standard-calling syntax.[3] This
syntax replaces the nonstandard $ZCALL mechanisms that
many vendors use. The syntax uses an introducing character
[&], a package name, a period, and the actual routine name,
followed by any parameters, for example:

S DISPLAY=$&XLIB.XOpenDisplay("M Window")
D &XLIB.XStoreName("Mwindow")

External-data typing is not addressed in the standard. In M,
there are a large number of implicit data types. [4] In non-M
environments, data types are usually explicit. Even when the
data typing is explicit, there are complex issues surrounding
an interface between any two languages or environments. A
number of existing calling standards work with multiple lan­
guages (e.g., VAX Calling Standard, 1978 to date, and Digi­
tal Equipment Corporation), but these are environment- and
vendor-specific. Several American National Standards Insti­
tute (ANSI) and International Organization for Standardiza­
tion (ISO) groups are working on many related topics. One
group produced an interim document for Common Language­
Independent Data Typing (ISO/IEC/JTC l/SC22/WG 11/
N319R). The specification is large, complex, and cumber­
some. Many people have worked years in this field, and a
final standard has yet to emerge. Issues encountered while
developing the X Window binding provide a snapshot of these
problems.

Three Interfaces
Three types of interface are possible between two languages
or environments. The first is a byte- or bit-stream mecha­
nism. This works well for platform-independent network
protocols, and is used for both Open M Interconnect (OMI)
and X. This type of interface is typically at a lower level than

6 Al COMPUTING

is optimal for application development. Applications on both
sides of the byte stream must encode and decode. Perfor­
mance is not necessarily a feature of these implementations.
Portability frequently is a feature, although some byte-stream
protocols have failed this as well. To enhance performance,
implementations of some protocol-level interfaces include
standardized libraries. In either case, both sides of the inter­
face must use compatible interfaces. Examples of standardiz­
ing remote procedure calls (RPCs) suggest that this is not
uniformly accomplished easily.

The second type of data interchange is that of explicit data
typing and conversion. Some of this methodology was used
with the X binding. This was only feasible because the X
environment is defined in explicit and extensive detail. De­
tailed mapping of data structures between environments has
some negative aspects. The syntax to specify the access can
become cumbersome, and may be nonintuitive to some users.
While declaring the data translation is feasible in many cases,
it also implicitly may impose additional data-typing require­
ments. This can be a useful feature between two environ­
ments wherein there is explicit typing. When the two envi­
ronments are more disparate, this can impose burdensome
restrictions. "'-'

Data-type mapping requires three pieces of knowledge. First
is the data types supported by the calling language. Second
is the data types supported by the called language. Third is
data-fit algorithms, best-fit algorithms, and rules for excep­
tions to the direct mappings. An alternative to this methodol­
ogy is an intermediate definition language (IDL) and lan­
guages that support the first two pieces to interface to the
IDL. Now there are no standard IDL/language interfaces, and
at least three standard IDLs exist. Some form of an IDL also
may be useful in the third method of data interchange.

The third method of data interchange is that of routine-level
interface. This is probably the highest-level interface practi­
cal between environments. This level allows the calling of
routines between environments using defined interfaces. The
X binding also made use of this methodology. It is also avail­
able in various forms on today's M implementations. RPC
forms are based upon this concept, although to date no plat­
form- and environment-independent RPC exists. Many pos­
sible uses of technology may be developed at this level. One
is the interchangeable use of routines or environments.

April 1993

What Constitutes a Routine?
Lack of standardization in the definition of what constitutes
a routine call also presents a problem. ANSI Xl 1.1 defines a
routine. ANSI X3.159-1989, the C language standard, has
another definition. Similarly, FORTRAN, COBOL, and
other languages each use different calling and parameter
mechanisms. In many cases, these are defined in a language­
specific manner, and no provision is made for any standard­
ized mechanism outside that environment. Thus, a mapping
for calling and interchange of routines is needed.

Looking solely at RPC does not work. Many current RPC
implementations are in fact C-based, and presume C calling
conventions that are not available on all platforms. There­
fore, methods of routine interchange and definition are still
mostly platform dependent. Standards work is underway to
define standard interfaces, within both the Institute of Electri­
cal and Electronic Engineers (IEEE) (P1003) and ANSI
(X3T2).

"'I.
The X Window binding for M used techniques of two forms
of data interchange. Each has its uses, although for general
applications-level programming, routine interface seems to
be preferred to direct data interchange. Advantages include
higher performance and greater flexibility at the applications
level. The callback mechanism employed within the binding
is a good example of a simple routine interface. The
XMUMPS. Set Value call is a good example of direct data inter­
change. The latter does not work well if the external environ­
ment is generalized. The techniques can certainly be used,
but a well-specified external definition is required.

Reasons for each method vary. The X Window binding has
a standard interface fo routines typically written in C. Inter­
change at the routine level allowed simple access to the rou­
tines available on platforms supporting X Windows and Mo­
tif. These routines are widely documented and texts on them
abound. This worked well for routine-level interchange, but
data types within X are those of C, and there are many im­
plicit assumptions regarding sizing and structure. Special­
purpose routines with the binding to bridge data issues be­
tween the two environments now exist. These few routines
manipulate the direct data interchange that sometimes be­
comes necessary. Looking at how various languages inter­
face to X and to other environments provides some interesting
insights to the entire problem.

The Bridges to X
C and most other rigidly typed languages use fixed (machine­
dependent) sizes for atomic data types. The bit sizes of the
atoms may vary across platforms, but the relative sizes and

April 1993

names are constant. Users are warned about making assump­
tions about size, however. C also includes the nondeterminis­
tic zero-terminated character string and composite data types.
Composite data types include arrays, structures, and unions.
C arrays include a single atomic element, have specified di­
mensions, and are both rigid and densely packed in their
structures. M, by comparison, uses sparse arrays of any data
type. In C, structures also can define data aggregates com­
prised of subelements that are either atomic data elements or
composite data types, which eventually can be decomposed
to atomic data types. Mapping between these environments
raises a number of challenges for implementors. Differences
in the scope of life of data within various environments are
yet another challenge.

With the X binding as an example again, using the highest­
level interface (usually the level of the routine) greatly sim­
plifies programming at the applications level, if data typing
is assumed to be implicit or externally defined. This method
works for interchange with environments where no explicit
structure must be applied to data formats. For those formats
where data interchange is needed, transformation at routine
invocation time, if feasible, is useful. The issue of where data
reside, given two environments, is problematic. Keeping the
data on one side only can lead to serious performance prob­
lems or programming difficulties. Flexible high-level inter­
faces solving these issues are highly desirable.

The physical structure of atomic types presents problems for
languages using rigid typing. Other issues are less apparent,
but more problematic. Many languages use either ad hoc call­
ing structures or language-specific structures. Lack of stan­
dardization wreaks havoc in a multilingual programming en­
vironment. VAX users have long taken for granted the calling
standard that VMS-layered products use. Within the personal
computing market, it is different. There have been cases
where one vendor's C compiler uses a different calling struc­
ture than that of another vendor. If one uses a library com­
piled by one vendor's compiler, the lack of a standard calling
mechanism can prevent using another vendor's compiler with
that library.

Avoiding Other Languages' Pitfalls
These issues are greater than that of a single language or envi­
ronment. While data approximations that work across plat­
forms are feasible, there may be environments where they do
not work. Standardizing the physical format of data does not
ensure that complete interoperability will occur automati­
cally. M has avoided these pitfalls in the past by taking a
higher-level view. The concept of an IDL is useful, but care
must be taken to avoid a yet larger set of problems.

Al COMPUTING 7

I
I
I
I
i)
._3

~!
·~
l

-•~;

"~ ;if.

i

Providing data representation as a part of external routine in­
terface appears to give the best hope for interoperability with
the rest of the computing world. Implementations of the ID Ls
exist on some M external-call implementations today. They
deal with interoperability on the platform or platforms for
which the implementation was designed. Typically, these are
implementations and methods that are generally applicable.
This method places the data-interface definitions with the
routine-access definitions. The implementation of these
ID Ls across multiple platforms has proven this to be one valid
methodology.

Defining absolute mechanisms or atomic hardware types may
lead to the same pitfalls encountered with other languages.
As anyone who has ported compiled code between 16-bit,
32-bit, and 64-bit processors or interfaces can attest, pro­
grammatic or data size assumptions are often overlooked,
and cause enormous platform portability issues. Combining
relative sizing and characteristic specific typing (numeric,
alpha character, Bq_olean, etc.) is probably the best solution,
being simple yet flexible. This approach can be taken consis­
tently with the proposed 1993 ANSI Xl 1.1 specification.

Providing data representation as a part of
external routine interface appears to give
the best hope for interoperability with the

rest of the computing world.

Creating standard interfaces at levels where solutions are ei­
ther infeasible or unusable on various platforms seems fruit­
less. Specifying exact physical data element sizes, explicitly
or implicitly, is not useful either. No matter what size is cho­
sen, some platform exists for which these are invalid, use­
less, or possibly unimplementable. Using the highest-feasi­
ble level of abstraction lends to programmers the strengths of
M coupled with access to the external world. Any IDL nota­
tion adopted must be readily understandable and map directly
to M data constructs. A notation so abstract and complex that
the meaning and mapping are not readily recognizable by
both M programmers and external programmers serves little
purpose. To date, M has been remarkably free, by design, of
these issues. Whatever solution emerges, it needs to prolong
this trend. M

April 1993

Endnotes
1. P. Kuzmak, "Interfacing MUMPS to Mainstream Com­
puting," MUG Quarterly, 16:2/3 (May 1986), 5.

2. P. Kuzmak, "The Challenge of MUMPS for the 1990's:
Interface MUMPS to Mainstream Computing," MUG Quar­
terly, 19:1 (May 1989), 65--69.

3. R. White, IV, "External Routine Calling Syntax,"
MUMPS Computing, 22:2 (April 1992), 37.

4. T. C. Salander, "Data Types: Strong, Weak and Imagi­
nary," MUG Quarterly, 20:2 (August 1990), 43-51.

Additional Sources
International Organization for Standardization, [ISO/IEC/
JTC1/SC22/WG11/N319R] {also ANSI X3T2/92-097} In­
formation Technology - (Common) Language Independent
Datatypes, Working Draft 6 .1, 9 September 1992.

D. Marcus, "Bit Manipulation," Xl l/SC13/TG2/92-2,
1992.

D. Marcus, "Data Structures," Xl l/SC13/TG9/92-4, 1992.

R. White, IV, "Arbitrary Structures," ANSI Xll/SC9/90-
13,14,15,16.

R. White, IV, "X Window Binding," MUMPS Computing,
22:1 (April 1992), 43-47.

Russell White works in the DSM Product Group of Digital Equipment
Corporation in Massachusetts. He is a member of the M Technology
Association, the New England MUMPS Users' Group, DECUS, and
other professional organizations. In addition, he is the chairman of Sub­
committee 13 of the MUMPS Development Committee, the subcom­
mittee overseeing data management and manipulation. Beyond Minter­
ests, he writes for publications on horticulture and philatelies.

M COMPUTING 9

