
INTERFACING M

Serving SQL

by John Clemens

Toward Simpler Interoperability
Just as the minicomputer revolution of the 1970s reinvented
the wheels of the prior mainframe technology, improving
them along the way, so did the microcomputer revolution of
the 1980s reinvent and improve the wheels of the minicom
puter technology. The wheel that was often most improved
was the steering wheel, that is, the user interface. There is
now great demand for data residing on mainframes and mini
computers as well as microcomputers to be made available
to user-friendly software products running on commodity
priced PCs sitting on millions of desktops. Microcomputer
technology has progressed from file servers to database
servers. A leading contender for a language or protocol to
talk to database servers is some form of Structured Query
Language (SQL).[1]

To meet this demand as well as to provide simpler interopera
bility with software products in the more immediate environ
ment, Digital's Digital Standard Mumps (DSM) Product
Group decided to implement an SQL access method for DSM
databases. Following is a description of this implementation
and some of the necessary considerations.

Terminology
In speaking about databases, theorists often make a distinc
tion between data and metadata, where for a particular data
model, the metadata describe the organization of and the rela
tionships between the data elements. Of course the metadata
are data and often the metadata descriptions describe the
metadata as well as the data (a formal requirement for rela
tional databases). SQL assumes a relational data model and
the metadata entities -relations, domains, and attributes
refer to tuples (the data). We may also speak of tables instead
of relations, rows instead of tuples, and columns for attri
butes, or for the values of attributes in a row.

Database languages are classified as data definition languages
(DDL) if they describe and manipulate metadata; they are
called data manipulation languages (DML) if they retrieve
and modify data. The data repository for metadata is usually
called a data dictionary. To refer to data models, this article

50 Al COMPUTING

will use the terms hierarchical, network, and flat (rather than
relational), since it is between you and your conscience
whether the data you present comply with all of Codd's
rules. [2] SQL will not generally notice, but necessitates first
normal form (fields must be atomic, not repeating).

SQL is an ANSI standard language that serves as both a DDL
and a DML for relational databases. M is a general purpose
computer language with a built-in hierarchical storage facil
ity for permanent data. As such, M is an extremely facile
DML, but there is no intrinsic DDL or built-in data diction
ary. With DSM, Digital distributes DSM Application Soft
ware Library (DASL), a 4GL query and reporting facility
based on a data dictionary, which maps globals as flat re
cords. We decided that we should support DASL as a source
of metadata, but since M makes it easy to roll one's own
data dictionary and many users have done so, we decided to
support other data dictionary sources as well.

Implementation
A newly released Digital product, RdbAccess for Custom
Drivers, provided a means of implementing SQL access.
This product consists of a "non-SQL i!ata server" (NSDS)
engine, originally developed to support the product RdbAc
cess for RMS (Digital's Record Management Services). The
NSDS engine allows the development of a metadata driver
(to tell NSDS about metadata when requested), and a data
driver (to fetch data when requested), via a relatively simple
call interface. NSDS talks in tum to client software using
Digital Standard Relational Interface (DSRI), in short pre
tending to be something like Rdb, Digital's relational data
base product.

The advantages of being "under the Rdb hood" are twofold:
(1) many DSRI-layered software products such as SQL,
DECQUERY, and RALLY can access DSM data; and (2)
accessibility to cross-platform database-access protocols
supported by Digital. This should allow an implementor to
easily integrate SQL applications that reside on any of the
eight platforms supported by Digital's Network Application
Support (NAS) product family. These include DOS, Micro
soft Windows, Apple Macintosh, SUN SPARCstation, OSI
2, ULTRIX, Open VMS VAX, and Open VMS Alpha AXP
systems. This cross-platform support should continue into

April 1993

the future regardless of which protocol wins the standards
"war": Microsoft's ODBC, Borland's IDAPI, the SAG stan
dard [1], or any other database access protocol.

Consequently, the product group wrote NSDS metadata and
data drivers in C (because they had to be linked, shareable
images), but used the DSM Call Interface to call in to DSM
to do all the "dirty work." A typical NSDS driver routine
receives requests from NSDS, sets some DSM local vari
ables, executes a DSM routine entry point, reads the value of
some DSM local variables, and finally returns data to NSDS.
It is left entirely up to the DSM routines to specify the meta
data and the data. The interface is simpler than an SQL inter
face-parsing SQL, doing joins, and optimizing queries all
happen at higher levels. A read-only DASL version of the
DSM routines was the first implementation, and an equiva
lent package for VA FileMan is under development. Publish
ing the call interface should allow users to develop data and
metadata routines for their own databases.

The DSM entry wints are listed in the following table:

Entry To/From Description

Metadata Routines
INIT From Database attach
FF To Fetch global fields

(domains)
FDR To Fetch dictionary relations
FRF To Fetch relation fields

(attributes)

Data Access Routines
INIT From Database attach
QUERYR To Relation and primary

key info
DBKLEN To DBKEY length
AUXKEY To Auxiliary key info
OPEN From Open access context
CLOSE From Close access context
SAP From Set access path
DBKGET To Get tuple by DBKEY
GETNXT To Get next tuple

Table 1. DSM routine entry points.

The "To/From" refers to whether the information flow is to
or from NSDS. These are the calls necessary for a read-only

April 1993

version. NSDS supports modification of data (but not meta
data). So additional routines will be supported for a read/
write version now under development, as shown in Table 2.

Entry To/From Description

TRSTART From Start transaction
COMMIT From Commit transaction
ABORT From Abort transaction
INSERT From Insert tuple
DELETE From Delete tuple

(byDBKEY)
UPDATE From Update tuple

(byDBKEY)

Table 2. Modify data routines.

In the read/write version, there is a need for transaction roll
back whether DSM transactioning is used or not. A problem
for both DASL and FileMan is the semantics of INSERTing
or UPDATEing a tuple that contains pointer fields; DELETE
is less of a problem. All data modification calls might require
the specification of an M action routine, written by someone
familiar with the database, to preserve referential integrity.

This cross-platform support should con
tinue into the future regardless of which
protocol wins the standards ,✓war" ...

The read-only routines thus far implemented can be relatively
simple, but there are some special considerations.

• Datatypes-M does not have any, but DASL and FileMan
do, based on the use of the datum. The metadata driver tells
NSDS that all fields are one of three data types-STRING,
NUMERIC, and DATE-and performs the necessary con
versions.

• DBKEYS-When fetching tuples for SQL, a dbkey (a
unique identifier for the tuple) must be returned along with
the tuple. A later request in the SQL session might request
the tuple by dbkey. For DASL, the dbkey is the delimited
concatenation of the "primary keys" (subscripts); for File
Man the dbkey will be the unique internal entry number.
Depending on external circumstances, dbkeys have to be
valid for the life of a transaction or of a session. This inter
face then assumes dbkey validity for the life of the session.

Continued on page 54

II COMPUTING 51

• Access paths-NSDS permits the specification of one primary
key and multiple auxiliary keys to take advantage of existing
indices or cross-references. For DASL, the primary key is the
first "primary key" (highest-level subscript); for FileMan it is
the cross-reference for the NAME (.01) field. The call inter
face is at a lower level than SQL-parsing has all been figured
out for you, but the "WHERE" clause peeks through in the
case ofaccess paths. For example, if the data driver tells NSDS
that for relation WINES there is an auxiliary key for attribute
VINTAGE, the query "SELECT* FROM WINES WHERE
VINTAGE BETWEEN 1970 AND 1975" will cause a set
access path call conveying the upper- and lower-bound infor
mation for that key, and these bounds must be honored in the
"get next tuple" call returns.

• Collating Sequence-The M collating sequence for subscripts
posed some problems, at least in the DASL implementation.
Even though the tuples in a relational database are not ordered,
in the case where the primary key is logically a string but has
some canonic numbers, anASCIIorderfunctionhadtobewritten
in M to satisfy access path requests for that key. Of course, in
DSM, a global may be string-collated but many are not so col
lated, and it may not be an option to convert existing globals.

Figure 1 diagrams a sample architecture for this implementa
tion (using a field test version of an ODBC driver for Rdb).

MS ACCESS
PC

PATHWORKS

SQL SERVICES

RDB/DISP ATCH Vil

RDB NSDS or

NSDS DRIVERS ALPHA

DSM

Figure 1. Architectural overview.

54 /I COMPUTING

DASL
The DASL version was relatively free of problems, since the
DASL data dictionary had been designed to support SQL-like
queries. Tables are defined with a set of fixed-length fields
based on data dictionary fields containing global references. ,
DASL, like other M tools, tends to be user friendly and flex
ible. This flexibility may cause conflicts when interfacing
with more rigid standards. The DASL implementation pres
ents two examples.

Since field definitions in DASL tables reference data diction
ary fields, it seemed natural for the metadata driver to tell
NSDS about all the data dictionary fields as global fields (do
mains), and define the table fields referencing the domains.
But since DASL allows overriding the datatype and length of
the data dictionary field, the table definition of the field could
be in conflict with the global field definition as far as NSDS
was concerned. This resulted in having no global fields. They
aren't required; NSDS will invent domains.

DASL supports several types of cross-references and some
of them are case-insensitive; this is ideal for looking up
names, for example. But since such cross-references are not
ASCII-sorted with respect to the original data, they cannot be
easily used for auxiliary key access paths defined by NSDS.

FileMan
FileMan provides an interesting COQtrast with DASL. In
DASL, data storage is assumed to be hierarchical, but the
data model is flat. In FileMan the data storage for a file is flat,
but the data model (because of subfiles) is hierarchical. There
are four particular problems facing the FileMan implementa
tion-subfiles, pointer fields, field lengths, and fields that are
arbitrarily long.

DASL, like other M tools, tends to be
user friendly and flexible.

Multivalued fields, implemented as subfiles, violate first nor
mal form; one either omits them or finds some way to present
flat tables. Two ways come to mind: one is "flattening" and
the other is "normalization." Flattening means that for each
value of a subfile, the M data driver would present a separate
tuple of the parent file entry along with that value. For exam
ple, flattening a file entry with two subfiles, each of one hun
dred entries, would result in ten thousand tuples. Normaliza
tion consists of defining internal entry numbers as external
table attributes and presenting subfiles as separate tables with
the parent's entry number as one of its attributes; the parent

April 1993

l

table could then be joined with the table representing its sub
file. For example, if there were a patient file with a nickname
subfile, these would be represented as a patient table (with the
internal entry number as one of the attributes) and a separate
nickname table (with the patient file internal entry number as
one of the attributes and the table name invented by the M
driver). Subfiles can have subfiles recursively: the New Per
son file defined in Kernel V. 7.0 has dozens of subfiles at as
many as three levels below the top, summing to hundreds
of fields. This could present a problem if totally flattened,
because although Rdb doesn't have any particular column
limit, SQL SERVICES does and so does Microsoft Access.
Normalization of this same file could lead to many passes
over the same actual file to provide joins with multiple sub
files represented as separate tables.

In short, total flattening could exceed certain limits, and total
normalization could cause abysmal performance in some
cases.

Pointer fields a'k not a problem if the default representation
is to supply the NAME field value of the file entry pointed to,
but if you want "extended pointers" as described in Davis's
work, the information you need is not in the data dictionary
(although it might be in a print template).[3]

Field lengths are another problem because maximum lengths
are not stored in the data dictionary, although input edits for
text fields often contain "$L (x) >30" from which a maximum
can be inferred. Numeric fields often have print justification,
e.g., "JlO," from which a length can extracted. But field
lengths are hard to determine or indeterminate in the general
case.

Word-processing fields are arbitrarily long. Rdb actually
supports such fields (called in SQL "LIST OF BYTE VARY
ING," which is a list of BLOBS each over 65,000 octets
long). Sadly, NSDS does not, so we cannot use them. NSDS
does support text fields ofup to 32,765 characters, but maybe
for the first version we will limit fields to 512 characters
(guess why).

The solution to these problems could be defining a default
behavior in each case, which could then be overridden by an

April 1993

entry in an SQL presentation file (hierarchical, of course)
with entries for each file, and subfiles for the fields. This file
would be used by the M drivers to control how they respond
to SQL queries. The default presentation for subfiles might
be normalization, but in this file you could specify flattening.
Likewise the default behavior for pointer fields could be
overridden. The default for field length could be a maximum,
say 512, but the SQL presentation file could specify an actual
maximum. This file would also be useful for defining files
and fields that SQL need not see.

Another way to resolve the flattening versus normalization
issue would be for the M drivers to present a table for the
totally flattened file and (inventing table names as necessary)
tables for the completely normalized file. M

Endnotes
1. SAG is the SQL Access Group, a nonprofit standards orga
nization that works in conjunction with X/Open. Its members
include Digital and Microsoft. Standards being developed in
clude an API (application programming interface) for embed
ded SQL, a CLI (call level interface) dynamic SQL interface,
and F AP (Formats and Protocols)-a clienUserver communi
cation protocol for SQL remote database access. Microsoft's
ODBC (Open Database Connectivity) is based on SAG's
CLI. Borland' s IDAPI (Integrated Database Application Pro
gramming Interface) is also based on SAG standards with
extensions for nonrelational databases. A number of compa
nies, including IBM, have jumped on this bandwagon. Inter
face programmers love standards-as many as possible.

2. E. F. Codd, "ARelationalModelofDataforLargeShared
Databanks," CACM, 13:6 (1970), 377-387, and subsequent
papers, raising the hurdle a relational database must clear.

3. R. G. Davis, FileMan User Manual, Volume I/, 1990.

John Clemens is an independent consultant currently associated with
the DSM Product Group. He has been writing computer programs
for over thirty years. Many of these programs were written in M
(MUMPS). He can be reached at 508-256-8044 or clemens
@dsm.enet.dec.com.

M COMPUTING 55

