
INTERFACING M
_____,/

Leveraging the Power of Off-the-Shelf
Windows Applications

by Kristin N. Johnson and Steven K. Lathrop

Dynamic Data Exchange Gives
Ma Boost
The tools are now in place to allow the M programmer to
write applications for the Microsoft Windows environment.
One particularly interesting consequence of this development
is that M applications can now take advantage of Windows'
built-in interprOfess communication protocol-=-Dynamic
Data Exchange (DDE). If you have ever wanted to control
Windows applications from M or share data with and among
those applications without user intervention, DDE makes this
possible.

DDE allows applications to "talk" to one another by sending
data and instructions back and forth. It can be used for tasks
as simple as placing values in the cells of a spreadsheet to
projects as complex as coordinating the activity of all the ap­
plications on the Windows desktop. Many popular Windows
applications support DDE, such as Microsoft Excel, Micro­
soft Word for Windows, and Borland's ObjectVision. Using
DDE, M software can now moderate a user's access to most,
if not all, of the functionality present in these (and other) Win­
dows applications-thus seamlessly incorporating the fea­
tures of off-the-shelf Windows applications into M systems.
DDE gives M Technology a powerful link to heavily tested,
commercial-quality software, thus obviating the need to de­
velop code to perform these functions.

DDE support enhances M Technology in two major areas:
language extension and usage. The functionality of M can be
augmented more conveniently than with the traditional
ZCALL, which is nonstandard and can be difficult to imple­
ment. With DDE, a rich set of functions provided by other
applications can be embedded in M code. For example, Mi­
crosoft Excel 3. 0 comes with a 238-page Function Reference
Manual--every function or macro in that manual can now
be called directly from M routines. Building on the superior
database and routine development capabilities of M, DDE
support positions Mas a Windows desktop manager, as well
as a database server accessible from other applications.

April 1993

This article gives an overview of Dynamic Data Exchange as
seen from the Windows system level and from its incarnation
in Data Tree's OT-Windows product at the M level (note that
other M implementors such as Micronetics should soon have
commercially available products with the same features as
OT-Windows-if they do not already). Two examples are
presented. One example shows the basics of establishing a
DDE conversation and obtaining information from a Win­
dows application. The other demonstrates the use of Micro­
soft Excel as a graphical spreadsheet and chart presentation
tool.

Dynamic Data Exchange­
An Overview
DDE is based on the event-driven nature of Microsoft Win­
dows. Windows maintains an event queue for the applica­
tions running on the desktop. Whenever an event occurs in
the system, such as a mouse click or menu selection, the ap­
propriate application is notified. The application then re­
sponds by performing whatever processing is necessary.
DDE uses this internal messaging system to allow two Win­
dows programs to carry on a "conversation" by posting mes­
sages to one another. The program initiating a conversation
is called the "client" (or destination) and the other is called the
"server" (or source). A DDE server is a program that provides
data and functions that may be useful to client programs.

To establish a DDE conversation, the client sends a
WM_DDE_INITIATE message to the system event queue.
This message specifies which application the client wishes to
speak with and the topic of the conversation. The application
specified must be the name of a Windows program, such as
"EXCEL" for Microsoft Excel. The topic can be the name of
any topic about which the DDE server is willing to con­
verse-this is usually the name of a document file that was
created by the server. In the case of Excel, a valid topic would
be the name of a worksheet (e.g., "MY_SHEET.XLS"). If
the DDE server application is available and the topic is valid,
the server sends a WM_DDE_ACK message to the client
acknowledging the receipt and processing of the WM_DDE­
_INITIATE message. Along with this message, the DDE
client receives the "address" of the "mailbox" at which the
server can be reached. This mailbox takes the form of a win-

Al COMPUTING 33

<low handle-an integer identifier that is unique to each win­
dow. ODE clients and servers create a distinct (usually hid­
den) window for each DOE conversation that acts as a
"mailbox" for messages-thus allowing client applications
to carry on multiple ODE conversations with servers and vice
versa.

With DDE, a rich set of functions
provided by other applications can be

embedded in M code.

Once a ODE conversation has been initiated, a number of
messages may pass back and forth between client and serv:er.
Usually, the messages consist of client requests for data items
and server responses. In order for the client to receive data
from the server, a particular data item must be requested. In
the case of Excel, a data item might be the name of a particular
cell in a worksheet, such as "RlCl" for the cell in row one,
column one. A one-time request for a data item is made by
posting a WM_DDE_REQUEST message to the server. The
server responds by posting a WM_ DOE_ DAT A message to
provide the client with the requested data item value. This is
called a "cold" (or manual) ODE link, since no further discus­
sion goes on between client and server concerning the speci­
fied data item.

The client application also can elect to send the server one
of two other types of data-requesting messages. If the client
wants an immediate response from the server (as in the case
of the cold link described above) in addition to continued no­
tification of changes in the data item's value and automatic
transmission of the new value, the client posts one flavor of
the WM_DDE_ADVISE message to the server. In re­
sponse, the server posts a WM_DDE_DATA message
(along with the new value) to the client whenever the value of
the data item changes. This is known as a "hot" (or automatic)
ODE Link. Anotherflavorofthe WM_DDE_ADVISEmes­
sage may be posted to the server if the client merely wants to
be notified of changes in the data item's value. This is known
as a "warm" (or notify) DOE Link. In this case, the server
posts a WM_DDE_DATA message (without the value of
the data item) to the client whenever the value of the data item
changes. And as you might expect, to actually retrieve the
new value of the data item, the client posts a WM_DDE­
_REQUEST message to the server. A warm link is useful
when the processing involved in continually transmitting new
values of the data item to the client is prohibitive-as the case
may be if the data item is large or unwieldy.

34 M COMPUTING

There are two other very useful DOE messages that the client
may post to the server. One, the WM_DDE_EXECUTE
message, allows the client to request that the server execute
a procedure in the server's native programming, macro, or
script language. The other message, WM_DDE_POKE,
allows the client to send unsolicited data items to the server.
For example, you could use this message to place values di­
rectly into the cells of an Excel worksheet or the fields of an
Object Vision form. The power of these two messages has not
generally been exploited as fully as it might-even in the
Windows community.

Of course, just being aware of the Windows messages
involved in carrying on a DOE conversation does not get
you even halfway down the road toward using ODE in
applications. In order to use these system-level messages
themselves you must master Windows programming in a
language such as C. You must learn how to write a
"WinMain()" function, register a Window Class, create

Using these DDE device functions in M
... is a great deal easier than using the

raw DDE messages themselves in a
Windows application developed in C.

windows, and write Window Procedures. But don't despair
if this view of DOE seems a bit too complicated to dive

\;.:

into with great eagerness-even Microsoft acknowledges
that there are better ways to manage DOE conversations
than with these raw messages. With Windows 3.1 Micro­
soft included a new, higher-level interface to the DOE
messages called the Dynamic Data Exchange Management
Library (DDEML). And, as M programmers, we have
come to expect a high level of abstraction between our­
selves and the guts of a particular technology-this is one
of the strengths of M. Fortunately, there is at least one
M system that supports DOE effectively-DataTree's OT­
MAX or DTM-PC system with the OT Windows APL

The Road to DDE
DataTree's OT Windows product is one tool that allows the
M programmer to create Windows applications (the reader
may be curious about how Data Tree M, being a DOS applica­
tion, can "talk" to Windows at all-please refer to the text
box on How DataTree M Talks to Windows).

Continued on page 36

April 1993

I
!
.
j
-

'

DT Windows provides access to many of Windows' system­
level functions from M through the use of appropriate device
functions (currently, using the WRITE /DevFuncName()
syntax, but subject to the forthcoming M windowing API
standard being developed by a MUMPS Development Com­
mittee (MDC) Task Group). DOE is supported with a "/
WDataExchange" device function. There are a number of
subfunctions to the "/WDataExchange" device function that
roughly correspond to the raw Windows DOE messages

(figure 1 shows the correspondence between the DOE mes­
sages described previously and the /WDataExchange sub­
functions). Using these DOE device functions in M, how­
ever, is a great deal easier than using the raw DOE messages
themselves in a Windows application developed in C.

Figure 2 shows an example of how to use the DT Windows
API to initiate a DOE conversation with Excel and request
the value of a data item.

Windows DDE Message

WM_DDE_INITIATE
WM_DDE_REQUEST (Cold Link)
WM_DDE_ADVISE (Hot Link)
WM_DDE_ADVISE (Warm Link)

DTWindows /WDataExchange Equivalent

WRITE /WDataExchange{l, "Application",
WRITE /WDataExchange{2, "Item")
WRITE /WDataExchange{3, "Item")
WRITE /WDataExchange{4, "Item")
WRITE /WDataExchange{5, "Item")
WRITE /WDataExchange{6)

"Topic")

WM_DDE_UNADVISE (Turn Off Hot or Warm Link)
WM_DDE_TERMINATE {Close Conversation)
WM_DDE_EXECUTE WRITE /WDataExchange{7, "[CommandString]")
WM_DDE_POKE WRITE /WDataExchange(8, "Item", "Value")

Figure 1. DDE messages and equivalent subfunctions.

DDEl Initiating a DDE Conversation with Excel and Requesting a Data Item
Assumes that Excel is already running on the desktop and that "MY_SHEET.XLS" is loaded
Open and Use a DT Window Device which handles the API functions

0 40 U 40
; Direct device functions to the DT Window Manager and create a top-level (main)
; window that will act as the DDE Client in a conversation with Excel

W /WUse(-1)
W /WCreate{l,0,0,100,200,"Excel DDE Client")

; Direct device functions to the DDE client window and initiate a conversation with Excel
W /WUse(l)
W /WDataExchange{l,"Excel","MY_SHEET.XLS")

; Perform a one-time request for the value of the data item "RlCl" -- i.e., the value in
; cell Al of the worksheet "MY_SHEET.XLS"

W /WDataExchange(2,"RlCl")
; Pull the Data Exchange Result message (82) off the message queue and place the
; value of the data item in 'val'

FOR W /WGetMessage(.x) IF +x=82,$p{x,$c(22),8)="R1Cl" s val=$p{x,$c(22),9) QUIT
C 40
U 0
W !,"The value in MY_SHEET, RlCl is """_val_""""
QUIT

Figure 2. M code: a DDE conversation with Excel.

36 M COMPUTING April 1993

To initiate a DDE conversation, the client application must
create a window that acts as a "mailbox" for DDE messages.
In DT Windows, this is accomplished by opening the device
that accepts API functions, directing them toward the parent
window desired (in this case, the parent is the DT Window
Manager, since the window is to be a main, top-level win­
dow), and issuing the "/WCreate" device function. The next
step is important, but easy to overlook: direct the "/WDataEx­
change" device toward the DDE Client "mailbox" window.
The rest is explained in figure 2. On behalf of programming
Windows from Min general, it can be said that creating a
DOE-capable program in about ten (or what could actually be
about five) lines of code speaks volumes for the superiority of
Mas a Windows development language. The same process in
C requires somewhere in the range of eighty to one hundred
lines of code. For more information on the specifics of pro­
gramming with the DT Windows API, see DataTree's docu­
mentation.

A slightly more sophisticated Excel example shows just how
much can be accorliplished from M via DDE with relatively little
effort. Admittedly, this code does not perform very complicated
interactions with the DDE server (M could act as a DDE client
at the same time and synchronize operations, etc.), but a little
testing and experimentation could produce a much more sophis­
ticated DOE-distributed system. Alternatively, you wouldn't
want to try writing the code in DT Windows to produce a three­
dimensional pie chart using low-level graphics calls. It all comes
down to using the right tool for the job.

Creating a DDE-capable program ...
speaks volumes for the superiority of M

as a Windows development language.

The example is based on DT Windows, but the details of how
things are accomplished with Data Tree's product are left out.
In one way or another, these techniques can be made avail­
able from any PC-based M implementation capable of run­
ning under Windows.

Using Excel as a Chart
Presentation Tool
Let's assume there is an online M system that must track con­
nect-time and you want to produce a chart presenting the
breakdown of connect time geographically. You might have
an M global structure resembling figure 3.

April 1993

Global Node Value (Connect-time in hours)
"X("CT", "Eastern") 1,000
"X("CT", "Central") 700
AX("CT"' "Mountain") 500
AX("CT"' "Pacific") 900

Figure 3. M global structure for tracking connect-time
geographically.

In order to chart this connect-time information using Excel,
you must establish a DDE conversation with Excel as we did
in the simple example above. In addition, you either start a
pre-written Excel macro to do the charting once the data is
in the cells of a worksheet, or you embed the Excel macro
commands in the M code itself (the latter is a great deal more
interesting-so that is what the code in figure 4 does).

The embedded Excel macro commands are transmitted to Ex­
cel via the WM_DDE_EXECUTE message. The M data is
placed in an Excel worksheet using the WM_DDE_POKE
message. Figures 5a and 5b show the results of the code in
figure 4. Please refer to these figures on page 38.

Wrapping It Up
We hope that our look at Windows and DDE leaves you with
a desire to examine the functions in any number of off-the­
shelf applications appearing on desktops everywhere. Users
who demand both glitzy graphical applications with powerful
data presentation tools and the power that M technology pro­
vides in terms of data storage, manipulation, and retrieval,
may find that leveraging ·the features of the applications they
are already running is an excellent solution. Even if you are
only now considering the move to Windows, you may
streamline development efforts considerably by letting some­
one else's shrink-wrapped code do much of the work for you
via Dynamic Data Exchange. Al

Kristin N. Johnson is senior vice president of Sentient Systems, Inc.
Steven K. Lathrop is the Microsoft Windows development team leader
at Sentient. Steve holds a B. S. degree in mathematics from Grove City
College, Grove City, PA. His work at Sentient has involved extending
and integrating M Technology with other tools, languages, and envi­
ronments such as Visual Basic, CIC++, and Microsoft Windows.

Al COMPUTING 37

